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Introduction

Today's Demand

SCHeh, ATFEERARGGHEE, @ Flash, NVMe, PCle & TF—RFENIERANEKRE A
1%, BEAFE 1/0 HRSSIHNESSEURARIRE.

Other works' weakness

e ECN-based Protocol:

o DCTCP: TEARIEEE O XS EERIEIRHIAIE A=
o PFC/DCQCN: fE incast BIKRY/IOPS ZEEIG = FRIFRABIR
o IXEEETATIRMAY ECN ARICHIMN IS STHRT LAY AR 4 EURGR

e RPC/Flow/DDL-based Protocols:
o M SENENERT, L. BB, HPEREITER
o NMEEZRHFPIR




Introduction

Advantages of Swift

o (FRER(EAIRREE,
o & TIMELY —REERRIF CPU A NIC 3B, N CPU AY(E S
LREtER, BEE O(10k) FIEAREST FthasR

o BYAMIE large-scale incast

5= IOPS

o BEIRDAEAENFEIR (host delay) FIZSHFEIR (fabric delay)
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Motivation

Storage Workloads

FREERNIEGEFOMBIEET(FRE., WMEREETER 0(10) ms iHERERTAER
LIERARE, EIFASHEREFATERILRBERS, B, EEEFEENFER
FEBERNNEARE, EREGEEXREE:

Media Size Access time IOPS Bandwidth
HDD 10-20TiB >10ms <100 120MB/s
Flash <10TiB ~100us  500k+ 6GB/s
NVRAM <1TiB 400ns 1M+  2GB/s per channel
DRAM <1TiB 100ns —~ 20GB/s per channel

Table 1: Single-device Storage characteristics

(FIENMFEIRERN S RE H RIS MBI ERIERRE, EERFRER (STER
(REBPEIR) 2EXEE,




Motivation

Host Networking Stacks

AR OPHINER T ER Linux FEIERFHIMASTREAAER, RDMA. NVMe AT
B8 OS/CPU FFiH, 1BETE OS bypass stacks @1 Snap. NIC HRsCH, g Swift IE21E
Snap HIE{T——Snap 27T NIC e FN4aR EEERZEINRE,

FEEZERIRERM 10PS BER TEREBHIARE, BEUERLIBRIHEATREXRED, &
RS AR G s RIERE =R TF A EE, Mt

Datacenter Switches
FEEPORIRHNIZFZABRE, FFENSMEARER, B S3HELRESR e/
I (DCTCP-like Protocols) X#ERRIREINARITTT,

m Swift FERIERIENIHEEGFIES, TV LXUH delay targets EEMWIIRHES
(ECN-echo) HEIENNSE.
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Design & Implementation

Component Delays of RTT

2. Forward Fabric DEIEIY
1. Local NIC Tx D&la'f Smichlﬂ TT W | 3. Remote NIC Rx Delay
— Ty —— —h
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(a) (b)

Figure 2: (a) Components of end-to-end RTT for a data packet and corresponding ACK packet. (b) Timestamps used to measure different delays (Hardware
and software timestamps are shown in blue and red, respectively).

e Local NIC Tx Delay: packet spends in the NIC Tx queue before it is emitted on the
wire.

e Forward Fabric Delay 7r: the sum of the serialization, propagation and queuing
delays.

e Remote Processing Delay

e Reverse Fabric Delay: the time taken by the ACK packet on the reverse path.



Design & Implementation

Target Delay Window Control (1)

Advanced than TIMELY

We found simplicity to be a virtue as TIMELY evolved to Swift and removed some
complexity, e.g., by using the difference between the RTT and target delay rather
than the RTT gradient.

To mitigate staleness concerns in using delay as a congestion signal: (XA 42 $EIL)

e use instantaneous delay as opposed to minimum or low-pass filtered delay.

e do not explicitly delay ACKs.
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Design & Implementation

Target Delay Window Control (ll)

On Receiving ACK

retransmit cnt = ©
target _delay = TargetDelay()
if delay < target delay then # Additive Increase (AI)
if cwnd >= 1 then
cwnd = cwnd + ai / cwnd*num_acked
else
cwnd = cwnd + ai * num_acked
else # Multiplicative Decrease (MD)

if can_decrease then
cwnd = max(1 - B*((delay-target delay)/delay), 1 - max _mdf) * cwnd

e Al: so that the cumulative increase over an RTT is equal to at .

e MD: the decrease depending on how far the delay is from the target.
o MD is constrained to be one per RTT, so that Swift does not react to the same

congestion event multiple times.
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Design & Implementation

Fabric vs. Endpoint Congestion

Swift 45 RTT 3T/ PEIEFORSHAAIERBIGSHIZEIR (fabric delay) , LA NIC 0
=y A i&?‘EEJEEE’JWWH‘MLJE (end-point host delay) .

XFLE T AR Swift 5/ RTT RUESRHITRZERE
e end_point_delay = remote_queuing + local NIC_Rx_delay ;
e fabric_delay = RTT — end_point_delay .
Swift (EFERMAZEE O, fownd IRIREEIEHZE, ecwnd IRiFmRAE. WAOEOENEE

IR ACK YRR, BEEAERNSER BirlinRitiR Hir. EULHEIEY
FZEE MEE min( fewnd, ecwnd) . LD ERFAEIERIVIZLT, (#15 Swift 7£48

REHBIN PP REIERMNMNHT 2 522,
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Design & Implementation

Scaling the Fabric Target Delay to Letency of paths ()

NIC Hop 1 :--.. N Flows Hop H
5 |8 § 5 5
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w o w n-' L%p)

Reverse
Path

Figure 3: Target delay encapsulates both fixed and variable parts and is dy-
namically scaled based on topology and load.

Fabric Target Delay &2 NIC *Dsc?ﬁm':' BITEEIR, HEBAGEIR. {&HEIERE

5, RIRIEFRFNMEEFN R ERT B 74854

ZHHRY
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"Sca ?\mgemff'\e Fabric Target Delay to Letency of paths (ll)

Topology-based Scaling

HiREXBERRERYRESR/ NI BRER, M DC FMEZAINERE, BEILEEER
ERERERNN EEERIEHER, KFiRaMRSi2Ee R/ B RIER -

o NEFIRIRIATTLHIRERZIRIRIIP ZREF TTL BYERNZERIRERSEEL, FEHE
5[B]ACKLH,

H

Flow-based Scaling

ISR, B S O(VN) (EESK, N 2580,

= Swift SRR 2S8R, cwnd SimA8iEmM/REC. FHIL, BHEIRERRICHIEE
K \/7 BPERERMEE cwnd /NS, XM ABR T EREBLAIER TREEHE

PAZS;, RIRR T AFE: ERRABMEREINEEER, ABR/IRIBIRERXR
ZE y&Lumo 14
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Design & Implementation

Scaling the Fabric Target Delay to Letency of paths (lll)

Overall Scaling

t = base_target + #hops X h + max (O, min (

Q
\/m y , fsrange) )

f
where a@ = - °Tane T B =

\/ fs_min_cwnd B \/ fs_max_cwnd

o #hops x h BHUEISEHIFEREF 2R, EHE XIEZEXT Topology-based Scaling HY
EE;
e max() MZEM cwnd SRAIHERREL X—HEEH.

Q
\/ fs_maz_cwnd
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Design & Implementation

Solution for Large-Scale Incast

if cwnd <= cwnd _prev then

t last decrease = now
if cwnd < 1 then

pacing delay = rtt / cwnd
else

pacing delay = ©

o Swift FBIFHHAZEE L cwnd /NF 1, MNITBEIMXT KRR incast [B]ZR;

o cwnd = 0.5, EIREHEIR 2*RTT [G/RIZEL
low latency # loss 2IEEEBRY;

EE; IXT

Y pacing-adjusted XJF{REF

o ? Nt 4i8XHi: But for a Snap transport that operates in MTU-sized units,
pacing is mostly not necessary for performance, nor is it CPU-efficient.
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Design & Implementation

Loss Recovery and ACKs

Swift IEBRMRE, HS51E5 TCP pusiRE RN HIER:

e Selective ACK for fast recovery, and

e retransmission timer to ensure data delivery in the absence of ACKs from the

receiver.

|

=

FUNRAEEIGHER, SHRERSRSTE:

HZE, REUEE MD HHISRRERgE  MAERE

DO

Swift AMFERZETUAY delay ACK ESCIIE
pure ACK , MMEFRITIZIZimAIPEEE,

ZhA, MENEEINEEE B TR RIAIX
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Design & Implementation

? Role of QoS
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Performance: Swift vs. GCN
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Performance: Swift vs. GCN

Average

-
(=1
=

T =0— GCN
_ == Swift

=
-3
wn

=

[ne]

wn
1

90 100

Loss Rate (normalized)
=
3

=
(=1
=

0 10 20 30 40 50 60 70 8
Port Utilization (%)

Average

(normalized)
—_
= —
| =
— =
X

10—2 L
2107 -
K: —O0— GCN
10—4 -
% —{= Swift
._110—5 L (] [ 1 1 [ L] ] I 1

0 10 20 30 40 50 60 70 80 90 100
Port Utilization (%)

—
=
=

=
-
[

Loss Rate (normalized)
F> =
o] 19,
(5] (=1

(=]
=
=

99.9th percentile

T =0=— GCN
| == Swift

0 10 20 30 40 50 60 70 80 90 100
Port Utilization (%)

99.9th percentile

=0O=— GCN
== Swift

0 10 20 30 40 50 60 70 80 90 100
Port Utilization (%)

Figure 6: Edge (ToR to host) links: Average and 99.9p Swift/GCN loss rate (lin-
ear and log scale) vs. combined utilization, bucketed at 10% intervals. Loss rate
is normalized to highest GCN loss rate. The near-vertical line in the log-scale
plot is due to extremely small relative loss-rate.
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Figure 7: Fabric links: Average and 99.9p Swift/GCN loss rate Swift/GCN loss

rate (linear and log scale) vs. combined utilization, bucketed at 10% intervals.
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Performance: Swift vs. GCN
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Figure 8: Average and 99.9th percentile loss rate vs. queue utilization.

Average
. - 0
075 -| & Swift
e]
0.50 - s]

il Ooooo 90 8

0.00 - m.g?ﬁ)aéjo?dﬁm.agx |
0 x A4x Gx Bx 10x
Cluster Throughput (normalized)

Loss Rate (normalized)

Figure 9: Edge (ToR to host) average and 99.9p loss rate vs. total Swift/GCN

throughput in the cluster.
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Figure 10: Average and 99.9p loss rate of highly-utilized (>90%) links in each

switch group.
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Figure 12: Cluster Swift/GCN Throughput vs. Average RTT. The dashed line
is the base target delay (normalized to 1).
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Experimental Results

Effect of Target Delay
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Figure 17: T;: Achieved RTT and throughput vs. target delay, 100-flow incast.

o EARTERW/NEDEFREREFINIC/ A BTHIERIANNEAER. BEX &
JME, EERNBREERATEZAIHIA. FiIFEBIFERBRLIFIVER, (Bil2
2F P EBSIEXIREERSMEEILE.
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Experimental Results

Throughput/Latency Curves
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Figure 18: T;: Achieved RTT and throughput vs. per-machine offered load.
Total load varies from 500Gbps to ~50Tbps.

o HITEMERTTANEINMIEM, EEIFABITZLIREZAIS0%

o 15 100% BYAEET, Swift {AReas iz 50Tbps UEHE & 99.9th-p RTT{R
¥E/ T 50ps .
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Experimental Results

Large-scale Incast

Metric Swift w/o cwnd < 1 Swift

Throughput 8.7Gbps 49.5Gbps
Loss rate 28.7% 0.0003%
Average RTT 2027.4us 110.2us

Table 3: Ti: Throughput, loss rate and average RTT for 5000-to-1 incast with
and without cwnd < 1 support.

o BISERE! Swift A TIREXT large-scale incast B35, ®E cwnd<1 , EHERIEGE

FEfLAEE:

o SwiftCMBIERFIIFZIREMNH LN 7 EELHFIE—FITF 5000:1 B incast
Eik, XE2—MHERMsE. iR, EAZIFwnd<1BIERT, IHYESERISE
BHISEEXE, NMmiFEEHE.
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Experimental Results

Endpoint Congestion
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Figure 19: T;: Fabric (f ¢wnd) and Endpoint (ecwnd) congestion windows for
a 100-to-1 incast with 1kB and 64kB writes.

o MEELFREMNTM, EKIER THENXE: IOPSEERBERSIIF=EOMIE
#l, MFEPRERBRUZZSEEORIPRS.

o FinFlimRT T NS inmrRERD, [ESwiftBeiEXTMEF0ENAVIHZEME AR
AINm Ay,
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o EER0F, BAIMN—IIHBRZIBRIENRIIE. RIFEFEAR, FIINARER
BHREERIN—NR, ARFTEENMFRXER. HIE2RESEE™SHIA

Y.

o ER17H] T RERTRIEUAIRITE. RIEAYCDFFainfY A FEEL. RETES0Gbps

pelg £, BRI FHEREE(NII10Mbps, {BSwiftlA0.9 18 ain 2 HE2ELI 7
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Over= Thanks for listening!
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