Paper-Reading Report

Paper:

DCTCP, DCQCN, TIMELY, Swift,
HPCC: High-precision Congestion Control
Cebinae: Scalable In-Network Fairness Augmentation

Reporter: Senj Lee

Date: 1st / July / 2024

mmmmmmm

Summary of Different CC Protocols

Summary: DCTCP

DCTCP

Overview

DCTCP combines Explicit Congestion Notification (ECN) with a novel control scheme at
the sources. It extracts multibit feedback on congestion in the network from the single
bit stream of ECN marks. Sources estimate the fraction of marked packets, and use that
estimate as a signal for the extent of congestion. This allows DCTCP to operate with
very low buffer occupancies while still achieving high throughput.

It is iImportant to note that the key contribution here is not the control law itself. It is
the act of deriving multi-bit feedback from the information present in the single-bit
sequence of marks.

DCTCP uses ECN feedback from congested switches for AQM approaches, and the
same applies to DCQCN.

Summary: DCTCP

Innovation points:

e DCTCP uses a simple marking scheme at switches that sets the Congestion
Experienced (CE) codepoint of packets as soon as the buffer occupancy exceeds a
fixed small threshold - K.

e Standard TCP cuts its window size by a factor of 2 when it receives ECN notification.
In effect, TCP reacts to presence of congestion, not to its extent 2. Dropping the
window in half causes a large mismatch between the input rate to the link and the
available capacity. Specifically, controller at the sender:

ca+ (1—-g)xa+gxF
o cund < cwnd x (1 — %)

e DCTCP starts marking early and aggressively — based on instantaneous queue
length.

Summary: DCTCP

Advantages:
DCTCP alleviates three impairments:

e Queue buildup: &iX7HEFXIHZERZERIMAL, _JL‘,L1%iE§T%¢IL1_Tc%ﬁﬁ”%DEI’JBA?U&’:
ERBEIEE K, AR T BETFAFIEIIMAEFRER, XIS G FREiRTT)
BB~ 4ERY Hol BEEEREFEEN;

* Buffer pressure: {REGHIZE/FX EBE_JL‘JJEEXT?%&?‘&E%E’JU&H&“%, BREEER
BEXER, RAFEA=HTRPXEDS KM mEMTREE

Disadvantages:

e |ncast: If the number of small flows is so high that even 1 packet from each flow is
sufficient to overwhelm the buffer on a synchronized burst, then there isn't much
DCTCP—or any congestion control scheme that does not attempt to schedule

traffic—can do to avoid packet drops. --> Swift !

Summary: DCTCP

Remaining problems -- why average queue buildup size is (’)(\/N) 2 (I
Queue Size at time t: Q(t) = N x W(t) — C x RTT, where,

e NN:synchronized, long-lived flows with identical round-trip times RT'T,
e W (t): the window size of a single source at time t,

e (:shared single bottleneck link of capacity,

Packets sentin
this period {1 RTT)
Window Size are marksd. Queue Size
s
W+l
wli

(W*+1)[1-0/2)

o Time Time

Denote S(W7, W) is the number of packets sent by the sender, while its windows size
increases from W to Wy . This takes W9 — W7 round-trip times, during which the

. . W2—W?
average windows size is m thus, S(W1, W) = —2—L.

summRemaining problems -- why average queue buildup size is O(v N) ? (ll)

CXR]CZ\;T—i_K: and the

switch starts marking packets with the CE codepoint. During the RT"T" it takes for the

Critical window size at which the queue size reaches K : W* =

sender to react to these marks, its window size increases by one more packet, reaching
W*+ 1

Hence, the fraction of marked packets: o = S((Wffl‘;z W*g%*ﬂ) plugging

_ WY 2W*+1 o
S(Wl, WZ) — 2 (W*+1)2 ~ W* .

into o, we get: @?(1 — §) = Instead,

aN W*.

As the previous figure depicted, the amplitude of oscillation in the windows size of a
single flow, D = (W* +1) — (W* + 1)(1 — 5). Since there are N flows in total,

e A=Np=Wxle o N\ AW+ = L, /2N(C x RIT + K),

e To =D = %\/2 CxRITLR

e Finally, Q maz :N(W*—I—l) —CxRIT =K+ N.

SumliN

Overview

Motivition: On |IP-routed datacenter networks, RDMA is deployed using RoCEv2
protocol, which relies on PFC to enable a drop-free network.

When the queue exceeds a certain threshold, a pAause message is sent by PFC to

the upstream entity. The uplink entity then stops sending on that link till it gets an
RESUME message.

Hence, PFC can lead to poor application performance due to problems like head-
of-line blocking, unfairness and victim flow.

The fundamental solution to PFC's limitations is a flowlevel congestion control
protocol. In our environment, the protocol must meet the following requirements: (i)
function over lossless, L3 routed, datacenter networks, (ii) incur low CPU overhead on
end hosts, and (iii) provide hyper-fast start in the common case of no congestion. For
example, QCN does not support L3 networks. Thus, DCQCN is proposed.

summpppiévation points:

e Extend QCN to IP-routed networks requires using the IP five-tuple as flow
identifier, and adding IP and UDP headers to the congestion notification packet to
enable it to reach the right destination;

e Do not demand any custom functionality from the switches, and the protocol is
implemented in NIC.

e NP conveys this information back to the sender. The RoCEv 2 standard defines
explicit Congestion Notification Packets (CNP) for this purpose. When an RP (i.e.
the flow sender) gets a CNP, it reduces its current rate (RC) and updates the value
of the rate reduction factor, o, like DCTCP, and remembers current rate as target
rate (RT) for later recovery.

e There is no slow start phase. When a flow starts, it sends at full line rate, if there are
no other active flows from the host. This design decision optimizes the common
case where flows transfer a relatively small amount of data, and the network is not
congested.

summAdvantages:

e Support Layer-3 networks.

e By providing per-flow congestion control, DCQCN alleviates PFC's limitations -
unfairness, victim flow, poor efficiency, and etc. But do not obviate the need for

PFC. With DCQCN, flows start at line rate. Without PFC, this can lead to packet loss
and poor performance

e DCQCN is a rate-based congestion control scheme, because it is simple to

implement than the window based approach, and allowed for finer-grained
control.

Disadvantages:

e Making changes to the switches and NICs is especially problematic, as the QCN
functionality is deeply integrated into the ASICs.

e DCQCN is not particularly sensitive to congestion on the reverse path, as the send
rate does not depend on accurate RTT estimation

10

Summary: TIMELY

TIMELY

Overview

TIMELY can adjust transmission rates using RTT gradients to keep packet latency low
while delivering high bandwidth.

e RTT directly reflects latency.

e RTT can be measured accurately in practice. Recent NICs provide hardware
support for high-quality timestamping of packet events, plus hardware-
generated ACKs that remove unpredictable host response delays.

e RTT is a rapid, multi-bit signal.

TIMELY is the first delay-based congestion control protocol for use in the datacenter,
and it achieves its results despite having an order of magnitude fewer RTT signals (due

to NIC offload) than earlier delay-based schemes such as Vegas.
11

Innovation points:
Summary: TIMELY

e Adopt delay as congestion signal. Delay is in the form of RTT measurements. RTT is
a fine-grained measure of congestion that comes with every ACK. It effectively
supports multiple traffic classes by providing an inflated measure for lower-priority
transfers that wait behind higher-priority ones. Further, it requires no support from
network switches.

Why every ACK? -- RTT's limitation.

RTT measurements lump queueing in both directions along the network path. This
may confuse reverse path congestion experienced by ACKs with forward path
congestion experienced by data packets. One simple fix is to send ACKs with
higher priority, so that they do not incur significant queuing delay.

e Unlike earlier schemes, TIMELY does not build the queue to a fixed RTT threshold.
Instead, it uses the rate of RTT variation, or the gradient, to predict the onset of
congestion and hence keep the delays low while delivering high throughput. By
using the gradient, we can react to queue growth without waiting for a standing
aueue to form — a strateav that helbs us achieve low latencies.

12

Summary: TIMELY

Data

| —

TIMELY Congestion Control Engine U

; RTT : ' Rate : : :
. Measurament ——! Computation —— Pacing Engina :
i Engine : RIT Engine ‘Allowed:
e Signal o T . Rate ©..................

! >

Timestamps Paced Data

Figure 6: TIMELY overview.

. B seg.size
e RTT Measurement: RTT" = t ompletion — bsend — NIClinerate '

e Rate Computation:
o Computing the delay gradient

' . . - B RTT(t)
o Computing the sending rate (AI/MD): R=R+0,R=R (1 — Bd T)

e Pacing: TIMELY is rate-based rather than window-based because it gives better
control over traffic bursts given the widespread use of NIC offload. Windows do
not provide fine-grained control over packet transmissions. It is easier to directly

control the gap between bursts by specifying a target rate.
13

Summary: Swift

Swift

Overview

A improved version of TIMELY by Google.

Innovation points:

By using the difference between the RTT and target delay rather than the RTT
gradient, Swift is more simple than TIMELY.

To mitigate staleness concerns in using delay as a congestion signal:

e use instantaneous delay as opposed to minimum or low-pass filtered delay.

e do not explicitly delay ACKs.

14

Summary: Swift

Advantages:

o FRRER(EARRES, ETMRSES, ABENRESEARIEDONREA
o 1% TIMELY —REES34FRIFE CPU F NIC 2R, #RIEXS CPU BOMR A1 FEsR

o BHAME large-scale

incast SERERIETIRE cwnd<1), BIFEE O(10k) HtE

HYREBR TBEELR:

525 10PS

o GRS EAFENZER (host delay) FISHA%EIR (fabric delay) , 3 BIXIA[EIAYH
FFERFTNEZE. WA, UL

o EARI{EREHMIE]

R ERREAEFRIRAYARBAZEIR /K, IRIIRESHIFIAER, FE

REBABNEEE

15

Summary: HPCC

HPCC

Overview

HPCC leverages in-network telemetry (INT) to obtain precise link load information and
controls traffic precisely. By addressing challenges such as delayed INT information
during congestion and overreaction to INT information, HPCC can quickly converge to
utilize free bandwidth while avoiding congestion, and can maintain near-zero in-

network queues for ultra-low latency. HPCC is also fair and easy to deploy in hardware.

Innovation points:

INT
precise information based MIMD

16

Cebinae

Cebinae

17

Cebinae

18

