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Backgrounds & Goals

- Distinct features of LLM training.

- Goals with practical considerations.




Background

Due to the differences between LLMs and general cloud computing, traditional data center networks are not
well-suited for LLM training!

Problem 1: Traffic Patterns
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Figure 1: Traditional cloud computing traffic pattern. . Time (s) LI
Figure 2: NIC egress traffic pattern dur- Figure 3: Number of connections per
ing production model training,. host.
« Generate millions of flows, which gives the « Generate very few[~1] but periodically bursty flows,
network high entropy. (= ECMP scheme )  resulting in low entropy and high utilization (directly
« Each flow is continuous and low-utilization for reach the NIC capacity).

NIC capacity (under 20%).

ECMP scheme Worles terribly bad in the case of LLM training!




Background

Problem 2: Higher sensitivity to faults, especially single-point failures.
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1. First, LLM training is more sensitive to failures.
2. Second, failures in LLM training can result in significant costs.
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Figure 4: Checkpoint intervals of rep-
resentative LLM jobs.
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G1: Scalability: #GPUs 1K — 3K — 15K — 100K.
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Figure 6: #GPUs used in pro-
duction training jobs.

G2: High Performance: Minimize network hops as much as possible.

G3: Single-ToR fault tolerance.




Architecture

« Qverview.
« Frontend Network / Backend Network (Dual-ToR, Tierl, Tier2, Tier3)




Architecture

Overview:
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Figure 7: HPN overview. A solid parallelogram represents a segment (containing 1024 active GPUs and 64 backup GPUs). Two
dotted parallelograms represent dual-plane. A cube contains an entire Pod (containing 15K GPUs).
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(a) Stacked dual-ToR. (b) Non-stacked dual-ToR.

Figure 8: Dual-ToR solutions. In stacked dual-ToR (a), the malfunction of ToR1’s data plane would eventually trigger the offline
of ToR2. In non-stacked dual-ToR (b), two ToRs run independently.

Stacked dual-ToR is good enough, but there are still some issues that could be improved:
+ Stack failures,
» Issues resulting from ToR upgrades.

The root cause of failures in stacked dual-ToR is the strong dependency on synchronization via the direct link between two ToRs. Therefore
a new dual-ToR scheme is proposed in the paper:
1. Bundle two independent links.
«  Same Mac address
«  Different portIDs
«  Update ARP information concurrently on the two ToRs by duplication
2. Maximally leverage BGP under failures.



Architecture

Access?2: Tierl: 1K GPUs in one Segment
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HPN employs the latest 51.2Tbps (400Gbpsx8x16) Ethernet single-chip switch. In tierl, each switch possesses 128 active + 8 backup 200Gbps
downstream ports and 60 upstream 400Gbps ports.

Why single-chip switch?
« The bandwidth capacity of the ToR switch directly determines the number of GPUs in the same tier]l network.
« The root cause is that the multi-chip switch is a distributed switching system, with multiple chips interconnecting through a chip
fabric. Failures in the internal fabric, inter-chip interactions, and chip-to-CPU communication all contribute to the overall critical
outages.

Challenges introduced by high-throughput single-chip switch.
« Power consumption.
« Cooling system.




Architecture

Access?2: Tierl: 1K GPUs in one Segment
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Figure 11: Rail-optimized network under dual-ToR.

Rail-Optimized Network.

« What is rail? (Same order GPU in different hosts)

« Why proposed the concept of the rail-optimized network? (Nvidia)

« How rail-optimized network runs?

« What are the advantages of rail-optimized networks? Each set of dual-ToR switches can serve 128 GPUs, and the
16 ToRs collectively connect 1024 GPUs in a segment, substantially reducing the forwarding latency and providing
the utmost performance. More importantly, it significantly reduces traffic crossing the Aggregation layer, lowering
the possibility of load imbalance in the network.
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Figure 12: Tier2 network architecture. Figure 13: Traffic on ToRs’ ports towards the same NIC.

Figure 14: Queue length at downstream ports of ToR.

Minimize load imbalance.

1. If data center simply deploy a typical Clos topology between ToR and Aggregation, hash polarization would still
exist. To eliminating hash polarization in a Pod, the paper proposed Dual-plane scheme. As shown in Figure
12h, in dual-plane, ToR switches in each dual-ToR set are categorized into two separate groups. Further ablation
study reveals that the dual-plane design contributes up to 71.6% performance improvement for cross-segment
traffic.

To solve the load imbalance caused by ECMP[~2], HPN gets precise disjoint equal paths efficiently and balances
the load on them in the collective communication library.

« First, for each new connection request, HPN generates a set of connections passing through disjoint
paths.

« Second, HPN implements a simple yet effective application layer load-balancing scheme to fully utilize all
RDMA connections.



Access3: Tier2: 15K GPUs in one Pod

Stuff 15K GPUs in One Pod.

The dual-plane design brings another important benefit: it halves the number of link connections between ToR and
Aggregation, allowing Aggregation switches to support more segments in the same Pod. As a result, the scale of the

tier2 network is doubled.
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Table 2: Key mechanisms affecting maximal scale

Tier1 scale

Tier2 scale

51.2Tbps Clos 64 2K
Dual-ToR 128 (X2) 4K (x2)

Rail-optimzed 1K (x8) -
Dual-plane - 8K (x2)

Oversubscription of 15:1

15K (X1.875)




Architecture

Access4: Supporting Larger Scale Backend Network .._...---oocroooes emmmeeeeecraaeeeeeeeees
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the Aggregation switches for interconnecting

extra segments.
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« Deep diving into the communication pattern in | Segment 1 Segment 15
the LLM training, we find that the single |
training job across tens'of thousands O_f GPUs Different parallel strategies introduce different volumes of data
does not require excessive tier3 bandwidth transmission. As shown in Table 3, PP generates the lowest traffic
capacity. and utilizes the basic Send/Recv for communication, which is

insensitive to network bandwidth.
Table 3: Traffic patt f different lleli . : . : :
| i ral < %E;, er1|15 Opp = eren - ar;lp ° lsms| Deploying tier3 may introduce additional load imbalance risks.
: : To minimize this side effect, we make two enhancements. (1) We
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switch, we employ a prior perport hash [69] to ensure traffic
towards Pod i from physical port jwould uniquely forward to port

k i5—tuile irrelevantii eliminatini hash iolarization.




Architecture

Access5: Independent Frontend Network

The frontend network primarily handles management and
storage traffic (e.g., cluster management, dataset loading,
image loading and checkpoint saving/loading). It can also
carry inference requests/responses while serving model
inferences.

To ensure reliability, each frontend NIC connects to two ToRs in the non-
stacked dual-ToR way. In the frontend network, we design the
convergence ratio to be 1:1 at both Aggregation and Core layers,
guaranteeing maximal bisection bandwidth.

« Isolate storage traffic from training.

« Support inference compatibly. There is a trend to use training
GPUs in inference. The reasons are twofold: (1) As the size of
models increases, requiring GPUs with higher memory and
performance for inference services, the specifications for GPUs
used for inference are becoming increasingly similar to those
used for training. (2) We observe that many customers prefer
deploying both training and inference jobs on the same rented
cluster for better GPU utilization.
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Evaluation

- Performance from the perspective of LLM training / network-level.
« Reliability.




Evaluation

Environment.

« HPN is deployed in multiple clusters connecting O(10K) GPUs in Alibaba Cloud, and serves thousands of model
training jobs from dozens of customers.

«  HPNversus DCN+ (previous generation of training network architecture, whose backend network is a
traditional 3-tier Clos Data Center Network with full bisection bandwidth and dual-ToR enabled). In DCN+,
each segment contains 128 GPUs, and each Pod contains 4 segments.

« FEach hostis equipped with 8 NVIDIA H800 GPUs and 9 NVIDIA BlueField3 2x200Gbps DPUs. GPUs in the same
host are interconnected with 400GBps (bidirectional) NVLINK.
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Figure 16: Performance of training representative LLMs on
Figure 15: Model training performance on 2300+ GPUs under different network architectures. different network architectures.

LLM Training Performance.
« Figure 15a, the end-to-end performance is improved by more than 14.9% (actually a big value in production).
« Figure 15b, the cross-segment traffic is decreased by 37% on average.
- Figure 15¢, illustrate the queue length distribution of Aggregation switches’ downlinks.

. Fiﬁure 16, end-to-end trainini ﬁerformance is imﬁroved bi 7.9%, 14.4% and 6.3%, resiectiveli.



Evaluation

Network-Level Performance.

Evaluate the performance of typical collective communication operations (AllReduce and AllGather) with 448 GPUs (56
hosts), where AllReduce is the predominant operation in LLM training jobs.
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Figure 17: Collective communication performance.

« Figure 17a, HPN increases the performance of AllReduce by up to 59.3%.
« Figure 17b, the performance of AllGather is similar between HPN and DCN+.
« Figure 17c, HPN can increase Multi-AllReduce’ s performance by up to 158.2%.



Evaluation

Reliability.

In this subsection, we train LLaMa-7B with 256 GPUs (32 hosts), and inject link malfunctions (link failure and link
flapping) on a NIC-ToR link. We compare dual-ToR with typical single-ToR design to validate the reliability

improvement.
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Figure 18: Performance under different types of NIC-ToR
link malfunctions.

« Figure 18a, with dual-ToR, the failure of a single link only causes 6.25% performance degradation (repair
within 1 min).

« Figure 18D, in single-ToR, the temporary link flapping halts the training for more than nine seconds, but the
performance of dual-ToR is neligible.



Experience & Lessons

Experience during the paper’ s work.

My gains after reading the paper.




Experience

One Pod in a single data center building.
« In conjunction with HPN, each single building perfectly houses an entire Pod, making predominant links

inside the same building.

Asymmetric link state[~3] are possible.
« Thanks to dual-ToR design, this link leads to training performance degradation rather than the entire training

job crashes.

HPN complicates wiring.
« To eradicate wiring mistakes before end-to-end testing, we employ INT-based probes to check that each hop
(switchID and PortID) in paths precisely aligns with HPN's blueprint definition.

Why not employ the rail-optimized idea on tier? to support larger scale?
Rail-only tier2 heavily relies on models only generating intra-rail traffic. In current mainstream dense large
models, all traffic patterns have been specifically optimized to satisfy this constraint. However, the evolution of
new models would break this assumption. Relaying traffic across the intra-host network would be greatly
limited, making the cross-rail network vital. Therefore, we decide to construct any-to-any tier2, and leverage
tier3 to support a larger scale.



Experience

The location of the storage cluster. There are three main disadvantages to placing the storage cluster in
the backend network:

1. Typically the container images and dataset used by customers are usually stored outside (in other data centers
or customers network).

2. As aforementioned, injecting storage traffic in the backend network would result in fluctuations in training
performance.

3. Deploying a storage cluster in the backend consumes ToR ports, reducing the number of GPUs the backend
network can support. Therefore, we finally chose to place the storage cluster in the frontend network.

Why not leverage rail-optimized topology for handling ToR-related failures?

1. Proactively rerouting requires significant modifications on NCCL, which makes it hard to be employed by
customers.

2. Manipulate the I/O direction of collective communication would introduce extra risks in production.
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Alibaba HPN — &8 A T LLMIIZRREIEF ORI ARS , 7 BERMIFAHR T BASRYiH B
BT =, XEABRINMBREEELTIECRNT A5, AIUKEU T A RNEMARES:

1. Topology for LLM training.
2. Dual-ToR solutions.
3. Load balance.
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