Intro

Implement Merge Sort i.e. standard implementation keeping the sorting algorithm as in-place. 

In-place means it does not occupy extra memory for merge operation as in the standard case.

Approach 1: two pointers

  • Maintain two pointers that point to the start of the segments which have to be merged.
  • Compare the elements at which the pointers are present.
  • If element1 < element2 then element1 is at right position, simply increase pointer1.
  • Else shift all the elements between element1 and element2(including element1 but excluding element2) right by 1 and then place the element2 in the previous place (i.e. before shifting right) of element1. Increment all the pointers by 1.

Implementation

Below is the implementation of the above approach:

// C++ program in-place Merge Sort
#include <iostream>
using namespace std;
 
// Merges two subarrays of arr[].
// First subarray is arr[l..m]
// Second subarray is arr[m+1..r]
// Inplace Implementation
void merge(int arr[], int start, int mid, int end)
{
	int start2 = mid + 1;
 
	// If the direct merge is already sorted
	if (arr[mid] <= arr[start2]) {
		return;
	}
 
	// Two pointers to maintain start
	// of both arrays to merge
	while (start <= mid && start2 <= end) {
 
		// If element 1 is in right place
		if (arr[start] <= arr[start2]) {
			start++;
		}
		else {
			int value = arr[start2];
			int index = start2;
 
			// Shift all the elements between element 1
			// element 2, right by 1.
			while (index != start) {
				arr[index] = arr[index - 1];
				index--;
			}
			arr[start] = value;
 
			// Update all the pointers
			start++;
			mid++;
			start2++;
		}
	}
}
 
/* l is for left index and r is right index of the
sub-array of arr to be sorted */
void mergeSort(int arr[], int l, int r)
{
	if (l < r) {
 
		// Same as (l + r) / 2, but avoids overflow
		// for large l and r
		int m = l + (r - l) / 2;
 
		// Sort first and second halves
		mergeSort(arr, l, m);
		mergeSort(arr, m + 1, r);
 
		merge(arr, l, m, r);
	}
}
 
/* UTILITY FUNCTIONS */
/* Function to print an array */
void printArray(int A[], int size)
{
	int i;
	for (i = 0; i < size; i++)
		cout <<" "<< A[i];
	cout <<"\n";
}
 
/* Driver program to test above functions */
int main()
{
	int arr[] = { 12, 11, 13, 5, 6, 7 };
	int arr_size = sizeof(arr) / sizeof(arr[0]);
 
	mergeSort(arr, 0, arr_size - 1);
 
	printArray(arr, arr_size);
	return 0;
}
 
// This code is contributed by shivanisinghss2110
 
// C++ program in-place Merge Sort
#include <stdio.h>
 
// Merges two subarrays of arr[].
// First subarray is arr[l..m]
// Second subarray is arr[m+1..r]
// Inplace Implementation
void merge(int arr[], int start, int mid, int end)
{
	int start2 = mid + 1;
 
	// If the direct merge is already sorted
	if (arr[mid] <= arr[start2]) {
		return;
	}
 
	// Two pointers to maintain start
	// of both arrays to merge
	while (start <= mid && start2 <= end) {
 
		// If element 1 is in right place
		if (arr[start] <= arr[start2]) {
			start++;
		}
		else {
			int value = arr[start2];
			int index = start2;
 
			// Shift all the elements between element 1
			// element 2, right by 1.
			while (index != start) {
				arr[index] = arr[index - 1];
				index--;
			}
			arr[start] = value;
 
			// Update all the pointers
			start++;
			mid++;
			start2++;
		}
	}
}
 
/* l is for left index and r is right index of the
sub-array of arr to be sorted */
void mergeSort(int arr[], int l, int r)
{
	if (l < r) {
 
		// Same as (l + r) / 2, but avoids overflow
		// for large l and r
		int m = l + (r - l) / 2;
 
		// Sort first and second halves
		mergeSort(arr, l, m);
		mergeSort(arr, m + 1, r);
 
		merge(arr, l, m, r);
	}
}
 
/* UTILITY FUNCTIONS */
/* Function to print an array */
void printArray(int A[], int size)
{
	int i;
	for (i = 0; i < size; i++)
		printf("%d ", A[i]);
	printf("\n");
}
 
/* Driver program to test above functions */
int main()
{
	int arr[] = { 12, 11, 13, 5, 6, 7 };
	int arr_size = sizeof(arr) / sizeof(arr[0]);
 
	mergeSort(arr, 0, arr_size - 1);
 
	printArray(arr, arr_size);
	return 0;
}
 
# Python program in-place Merge Sort
 
# Merges two subarrays of arr.
# First subarray is arr[l..m]
# Second subarray is arr[m+1..r]
# Inplace Implementation
 
 
def merge(arr, start, mid, end):
	start2 = mid + 1
 
	# If the direct merge is already sorted
	if (arr[mid] <= arr[start2]):
		return
 
	# Two pointers to maintain start
	# of both arrays to merge
	while (start <= mid and start2 <= end):
 
		# If element 1 is in right place
		if (arr[start] <= arr[start2]):
			start += 1
		else:
			value = arr[start2]
			index = start2
 
			# Shift all the elements between element 1
			# element 2, right by 1.
			while (index != start):
				arr[index] = arr[index - 1]
				index -= 1
 
			arr[start] = value
 
			# Update all the pointers
			start += 1
			mid += 1
			start2 += 1
 
 
'''
* l is for left index and r is right index of
the sub-array of arr to be sorted
'''
 
 
def mergeSort(arr, l, r):
	if (l < r):
 
		# Same as (l + r) / 2, but avoids overflow
		# for large l and r
		m = l + (r - l) // 2
 
		# Sort first and second halves
		mergeSort(arr, l, m)
		mergeSort(arr, m + 1, r)
 
		merge(arr, l, m, r)
 
 
''' UTILITY FUNCTIONS '''
''' Function to print an array '''
 
 
def printArray(A, size):
 
	for i in range(size):
		print(A[i], end=" ")
	print()
 
 
''' Driver program to test above functions '''
if __name__ == '__main__':
	arr = [12, 11, 13, 5, 6, 7]
	arr_size = len(arr)
 
	mergeSort(arr, 0, arr_size - 1)
	printArray(arr, arr_size)
 
# This code is contributed by 29AjayKumar
 

Complexity

Note: Time Complexity of above approach is O(n^2 * log(n)) because merge is O(n^2). Time complexity of standard merge sort is less, O(n log n).

Approach 2: comparing elements farly

We start comparing elements that are far from each other rather than adjacent. Basically we are using shell sorting to merge two sorted arrays with O(1) extra space.

mergeSort(): 

  • Calculate mid two split the array in two halves(left sub-array and right sub-array)
  • Recursively call merge sort on left sub-array and right sub-array to sort them
  • Call merge function to merge left sub-array and right sub-array

merge():

  • For every pass, we calculate the gap and compare the elements towards the right of the gap.
  • Initiate the gap with ceiling value of n/2 where n is the combined length of left and right sub-array.
  • Every pass, the gap reduces to the ceiling value of gap/2.
  • Take a pointer i to pass the array.
  • Swap the ith and (i+gap)th elements if (i+gap)th element is smaller than(or greater than when sorting in decreasing order) ith element.
  • Stop when (i+gap) reaches n.
Input: 10, 30, 14, 11, 16, 7, 28

Note: Assume left and right subarrays has been sorted so we are merging sorted subarrays [10, 14, 30] and [7, 11, 16, 28]

Start with

gap =  ceiling of n/2 = 7/2 = 4

[This gap is for whole merged array]

10, 14, 30, 7, 11, 16, 28

10, 14, 30, 7, 11, 16, 28

10, 14, 30, 7, 11, 16, 28

10, 14, 28, 7, 11, 16, 30

gap =  ceiling of 4/2 = 2

10, 14, 28, 7, 11, 16, 30

10, 14, 28, 7, 11, 16, 30

10, 7, 28, 14, 11, 16, 30

10, 7, 11, 14, 28, 16, 30

10, 7, 11, 14, 28, 16, 30

 

gap =  ceiling of 2/2 = 1

10, 7, 11, 14, 28, 16, 30

7, 10, 11, 14, 28, 16, 30

7, 10, 11, 14, 28, 16, 30

7, 10, 11, 14, 28, 16, 30

7, 10, 11, 14, 28, 16, 30

7, 10, 11, 14, 16, 28, 30

 

Output: 7, 10, 11, 14, 16, 28, 30

Implementation

// C++ program for the above approach
#include <bits/stdc++.h>
using namespace std;
 
// Calculating next gap
int nextGap(int gap)
{
	if (gap <= 1)
		return 0;
		
	return (int)ceil(gap / 2.0);
}
 
// Function for swapping
void swap(int nums[], int i, int j)
{
	int temp = nums[i];
	nums[i] = nums[j];
	nums[j] = temp;
}
 
// Merging the subarrays using shell sorting
// Time Complexity: O(nlog n)
// Space Complexity: O(1)
void inPlaceMerge(int nums[], int start,
							int end)
{
	int gap = end - start + 1;
	
	for(gap = nextGap(gap); 
		gap > 0; gap = nextGap(gap)) 
	{
		for(int i = start; i + gap <= end; i++) 
		{
			int j = i + gap;
			if (nums[i] > nums[j])
				swap(nums, i, j);
		}
	}
}
 
// merge sort makes log n recursive calls
// and each time calls merge()
// which takes nlog n steps
// Time Complexity: O(n*log n + 2((n/2)*log(n/2)) +
// 4((n/4)*log(n/4)) +.....+ 1)
// Time Complexity: O(logn*(n*log n))
// i.e. O(n*(logn)^2)
// Space Complexity: O(1)
void mergeSort(int nums[], int s, int e)
{
	if (s == e)
		return;
 
	// Calculating mid to slice the
	// array in two halves
	int mid = (s + e) / 2;
 
	// Recursive calls to sort left
	// and right subarrays
	mergeSort(nums, s, mid);
	mergeSort(nums, mid + 1, e);
	
	inPlaceMerge(nums, s, e);
}
 
// Driver Code
int main()
{
	int nums[] = { 12, 11, 13, 5, 6, 7 };
	int nums_size = sizeof(nums) / sizeof(nums[0]);
	
	mergeSort(nums, 0, nums_size-1);
	
	for(int i = 0; i < nums_size; i++)
	{
		cout << nums[i] << " ";
	}
	return 0;
}
 
// This code is contributed by adityapande88
 
# Python3 program for the above approach
import math 
 
# Calculating next gap
def nextGap(gap):
 
	if gap <= 1:
		return 0
		
	return int(math.ceil(gap / 2))
 
# Function for swapping
def swap(nums, i, j):
 
	temp = nums[i]
	nums[i] = nums[j]
	nums[j] = temp
 
# Merging the subarrays using shell sorting
# Time Complexity: O(nlog n)
# Space Complexity: O(1)
def inPlaceMerge(nums,start, end):
 
	gap = end - start + 1
	gap = nextGap(gap)
 
	while gap > 0:
		i = start
		while (i + gap) <= end:
			j = i + gap
			
			if nums[i] > nums[j]:
				swap(nums, i, j)
				
			i += 1
		
		gap = nextGap(gap)
			
# merge sort makes log n recursive calls
# and each time calls merge()
# which takes nlog n steps
# Time Complexity: O(n*log n + 2((n/2)*log(n/2)) +
# 4((n/4)*log(n/4)) +.....+ 1)
# Time Complexity: O(logn*(n*log n))
# i.e. O(n*(logn)^2)
# Space Complexity: O(1)
def mergeSort(nums, s, e):
 
	if s == e:
		return
 
	# Calculating mid to slice the
	# array in two halves
	mid = (s + e) // 2
 
	# Recursive calls to sort left
	# and right subarrays
	mergeSort(nums, s, mid)
	mergeSort(nums, mid + 1, e)
	
	inPlaceMerge(nums, s, e)
 
# UTILITY FUNCTIONS 
# Function to print an array 
def printArray(A, size):
 
	for i in range(size):
		print(A[i], end = " ")
		
	print()
 
# Driver Code
if __name__ == '__main__':
	
	arr = [ 12, 11, 13, 5, 6, 7 ]
	arr_size = len(arr)
 
	mergeSort(arr, 0, arr_size - 1)
	printArray(arr, arr_size)
 
# This code is contributed by adityapande88
 

Complexity

Time Complexity: O(logn * nlogn)

Note: mergeSort method makes logn recursive calls and each time merge is called which takes nlogn time to merge 2 sorted sub-arrays.

Approach 3: number convertion

Suppose we have a number A and we want to convert it to a number B and there is also a constraint that we can recover number A any time without using other variable.To achieve this we choose a number N which is greater
than both numbers and add B*N in A.

so A --> A+B*N

To get number B out of (A+B*N), we divide (A+B*N) by N: (A+B*N)/N = B.

To get number A out of (A+B*N), we take modulo with N: (A+B*N)%N = A.

In a short, by taking modulo, we get old number back and taking divide we new number.

mergeSort():

  • Calculate mid two split the array into two halves(left sub-array and right sub-array)
  • Recursively call merge sort on left sub-array and right sub-array to sort them
  • Call merge function to merge left sub-array and right sub-array

merge():

  • We first find the maximum element of both sub-array and increment it one to avoid collision of 0 and maximum element during modulo operation.
  • The idea is to traverse both sub-arrays from starting simultaneously. One starts from l till m and another starts from m+1 till r. So, We will initialize 3 pointers say i, j, k.
  • i will move from l till m; j will move from m+1 till r; k will move from l till r.
  • Now update value a[k] by adding min(a[i],a[j])*maximum_element.
  • Then also update those elements which are left in both sub-arrays.
  • After updating all the elements divide all the elements by maximum_element so we get the updated array back.

Implementation

// C++ program in-place Merge Sort
#include <bits/stdc++.h>
using namespace std;
 
// Merges two subarrays of arr[].
// First subarray is arr[l..m]
// Second subarray is arr[m+1..r]
// Inplace Implementation
void mergeInPlace(int a[], int l, int m, int r)
{
	// increment the maximum_element by one to avoid
	// collision of 0 and maximum element of array in modulo
	// operation
	int mx = max(a[m], a[r]) + 1;
 
	int i = l, j = m + 1, k = l;
	while (i <= m && j <= r && k <= r) {
 
		// recover back original element to compare
		int e1 = a[i] % mx;
		int e2 = a[j] % mx;
		if (e1 <= e2) {
			a[k] += (e1 * mx);
			i++;
			k++;
		}
		else {
			a[k] += (e2 * mx);
			j++;
			k++;
		}
	}
 
	// process those elements which are left in the array
	while (i <= m) {
		int el = a[i] % mx;
		a[k] += (el * mx);
		i++;
		k++;
	}
 
	while (j <= r) {
		int el = a[j] % mx;
		a[k] += (el * mx);
		j++;
		k++;
	}
 
	// finally update elements by dividing with maximum
	// element
	for (int i = l; i <= r; i++)
		a[i] /= mx;
}
 
/* l is for left index and r is right index of the
sub-array of arr to be sorted */
void mergeSort(int arr[], int l, int r)
{
	if (l < r) {
 
		// Same as (l + r) / 2, but avoids overflow
		// for large l and r
		int m = l + (r - l) / 2;
 
		// Sort first and second halves
		mergeSort(arr, l, m);
		mergeSort(arr, m + 1, r);
		mergeInPlace(arr, l, m, r);
	}
}
 
// Driver Code
int main()
{
	int nums[] = { 12, 11, 13, 5, 6, 7 };
	int nums_size = sizeof(nums) / sizeof(nums[0]);
 
	mergeSort(nums, 0, nums_size - 1);
 
	for (int i = 0; i < nums_size; i++) {
		cout << nums[i] << " ";
	}
	return 0;
}
 
// This code is contributed by soham11806959
 
def mergeInPlace(a, l, m, r):
	mx = max(a[m], a[r]) + 1
 
	i, j, k = l, m+1, l
	while i <= m and j <= r and k <= r:
		e1 = a[i] % mx
		e2 = a[j] % mx
		if e1 <= e2:
			a[k] += (e1 * mx)
			i += 1
			k += 1
		else:
			a[k] += (e2 * mx)
			j += 1
			k += 1
 
	while i <= m:
		el = a[i] % mx
		a[k] += (el * mx)
		i += 1
		k += 1
 
	while j <= r:
		el = a[j] % mx
		a[k] += (el * mx)
		j += 1
		k += 1
 
	for i in range(l, r+1):
		a[i] //= mx
 
 
def mergeSort(arr, l, r):
	if l < r:
		m = l + (r - l) // 2
 
		mergeSort(arr, l, m)
		mergeSort(arr, m + 1, r)
		mergeInPlace(arr, l, m, r)
 
 
nums = [12, 11, 13, 5, 6, 7]
nums_size = len(nums)
mergeSort(nums, 0, nums_size - 1)
 
for i in range(nums_size):
	print(nums[i], end=' ')
 

Complexity

Time Complexity: O(n log n)
Note:  Time Complexity of above approach is O(n^2) because merge is O(n). Time complexity of standard merge sort is  O(n log n).