Introduction
Red-Black tree is a self-balancing binary search tree in which each node contains an extra bit for denoting the color of the node, either red or black.
A red-black tree satisfies the following properties:
- Red/Black Property: Every node is colored, either red or black.
- Root Property: The root is black.
- Leaf Property: Every leaf (NIL) is black.
- Red Property: If a red node has children then, the children are always black.
- Depth Property: For each node, any simple path from this node to any of its descendant leaf has the same black-depth (the number of black nodes).
An example of a red-black tree is:
Each node has the following attributes:
- color
- key
leftChild
rightChild
- parent (except root node)
[! question] How the red-black tree maintains the property of self-balancing?
The red-black color is meant for balancing the tree.
The limitations put on the node colors ensure that any simple path from the root to a leaf is not more than twice as long as any other such path. It helps in maintaining the self-balancing property of the red-black tree.
Operations on a Red-Black Tree
Various operations that can be performed on a red-black tree are:
Rotating the subtrees
In rotation operation, the positions of the nodes of a subtree are interchanged.
Rotation operation is used for maintaining the properties of a red-black tree when they are violated by other operations such as insertion and deletion.
There are two types of rotations:
Left Rotate
In left-rotation, the arrangement of the nodes on the right is transformed into the arrangements on the left node.
Algorithm
-
Let the initial tree be:
-
If
y
has a left subtree, assignx
as the parent of the left subtree ofy
.
- If the parent of
x
isNULL
, makey
as the root of the tree. - Else if
x
is the left child ofp
, makey
as the left child of p. - Else assign
y
as the right child ofp
.
- Make
y
as the parent ofx
.
Right Rotate
In right-rotation, the arrangement of the nodes on the left is transformed into the arrangements on the right node.
-
Let the initial tree be:
-
If
x
has a right subtree, assigny
as the parent of the right subtree ofx
. -
If the parent of
y
isNULL
, makex
as the root of the tree. -
Else if
y
is the right child of its parentp
, makex
as the right child ofp
. -
Else assign
x
as the left child ofp
. -
Make
x
as the parent ofy
.
Left-Right and Right-Left Rotate
In left-right rotation, the arrangements are first shifted to the left and then to the right.
-
Do left rotation on x-y.
-
Do right rotation on y-
z
.
In right-left rotation, the arrangements are first shifted to the right and then to the left.
-
Do right rotation on x-y.
-
Do left rotation on
z
-y.
Inserting an element
While inserting a new node, the new node is always inserted as a RED node. After insertion of a new node, if the tree is violating the properties of the red-black tree then, we do the following operations.
- Recolor
- Rotation
Algorithm to insert a node
Following steps are followed for inserting a new element into a red-black tree:
- Let y be the leaf (ie.
NIL
) and x be the root of the tree. - Check if the tree is empty (ie. whether x is
NIL
). If yes, insertnewNode
as a root node and color it black. - Else, repeat steps following steps until leaf (
NIL
) is reached.- Compare
newKey
withrootKey
. - If
newKey
is greater than rootKey, traverse through the right subtree. - Else traverse through the left subtree.
- Compare
- Assign the parent of the leaf as a parent of
newNode
. - If leafKey is greater than
newKey
, makenewNode
asrightChild
. - Else, make
newNode
asleftChild
. - Assign
NULL
to the left andrightChild
ofnewNode
. - Assign RED color to
newNode
. - Call InsertFix-algorithm to maintain the property of red-black tree if violated.
[! note] Why newly inserted nodes are always red in a red-black tree?
This is because inserting a red node does not violate the depth property of a red-black tree.
If you attach a red node to a red node, then the rule is violated but it is easier to fix this problem than the problem introduced by violating the depth property.
Algorithm to maintain red-black property after insertion
This algorithm is used for maintaining the property of a red-black tree if the insertion of a newNode
violates this property.
-
Do the following while the parent of
newNode
p is RED. -
If p is the left child of grandParent
gP
ofz
, do the following.- Case-I:
- If the color of the right child of
gP
ofz
is RED, set the color of both the children ofgP
as BLACK and the color ofgP
as RED. - Assign
gP
tonewNode
.
- If the color of the right child of
- Case-II:
- Else if
newNode
is the right child of p then, assign p tonewNode
. - Left-Rotate
newNode
.
- Else if
- Case-III:
- Set color of p as BLACK and color of
gP
as RED. - Right-Rotate
gP
.
- Set color of p as BLACK and color of
- Case-I:
-
Else, do the following.
- If the color of the left child of
gP
ofz
is RED, set the color of both the children ofgP
as BLACK and the color ofgP
as RED. - Assign
gP
tonewNode
. - Else if
newNode
is the left child of p then, assign p tonewNode
and Right-RotatenewNode
. - Set color of p as BLACK and color of
gP
as RED. - Left-Rotate
gP
.
- If the color of the left child of
-
Set the root of the tree as BLACK.
Deleting an element from a Red-Black Tree
This operation removes a node from the tree. After deleting a node, the red-black property is maintained again.
Algorithm to delete a node
- Save the color of nodeToBeDeleted in origrinalColor.
- If the left child of nodeToBeDeleted is
NULL
- Assign the right child of nodeToBeDeleted to
x
. - Transplant nodeToBeDeleted with
x
.
- Assign the right child of nodeToBeDeleted to
- Else if the right child of nodeToBeDeleted is
NULL
- Assign the left child of nodeToBeDeleted into
x
. - Transplant nodeToBeDeleted with
x
.
- Assign the left child of nodeToBeDeleted into
- Else
- Assign the minimum of right subtree of noteToBeDeleted into
y
. - Save the color of
y
in originalColor. - Assign the
rightChild
ofy
intox
. - If
y
is a child of nodeToBeDeleted, then set the parent ofx
asy
. - Else, transplant
y
withrightChild
ofy
. - Transplant nodeToBeDeleted with
y
. - Set the color of
y
with originalColor.
- Assign the minimum of right subtree of noteToBeDeleted into
- If the originalColor is BLACK, call DeleteFix (x).
Algorithm to maintain Red-Black property after deletion
This algorithm is implemented when a black node is deleted because it violates the black depth property of the red-black tree.
This violation is corrected by assuming that node x (which is occupying y’s original position) has an extra black. This makes node x neither red nor black. It is either doubly black or black-and-red. This violates the red-black properties.
However, the color attribute of x is not changed rather the extra black is represented in x’s pointing to the node.
The extra black can be removed if
- It reaches the root node.
- If x points to a red-black node. In this case, x is colored black.
- Suitable rotations and recoloring are performed.
The following algorithm retains the properties of a red-black tree.
- Do the following until the x is not the root of the tree and the color of x is BLACK
- If x is the left child of its parent then,
- Assign w to the sibling of x.
- If the right child of parent of x is RED,
Case-I:- Set the color of the right child of the parent of x as BLACK.
- Set the color of the parent of x as RED.
- Left-Rotate the parent of x.
- Assign the
rightChild
of the parent of x to w.
- If the color of both the right and the
leftChild
of w is BLACK,
Case-II:- Set the color of w as RED
- Assign the parent of x to x.
- Else if the color of the
rightChild
of w is BLACK
Case-III:- Set the color of the
leftChild
of w as BLACK - Set the color of w as RED
- Right-Rotate w.
- Assign the
rightChild
of the parent of x to w.
- Set the color of the
- If any of the above cases do not occur, then do the following.
Case-IV:- Set the color of w as the color of the parent of x.
- Set the color of the parent of x as BLACK.
- Set the color of the right child of w as BLACK.
- Left-Rotate the parent of x.
- Set x as the root of the tree.
- Else the same as above with right changed to left and vice versa.
- Set the color of x as BLACK.
Please refer to insertion and deletion operations for more explanation with examples.
Illustration
Insert
Red-Black tree is a self-balancing binary search tree in which each node contains an extra bit for denoting the color of the node, either red or black.
Before reading this article, please refer to the article on red-black tree.
While inserting a new node, the new node is always inserted as a RED node. After insertion of a new node, if the tree is violating the properties of the red-black tree then, we do the following operations.
- Recolor
- Rotation
Algorithm to Insert a New Node
Following steps are followed for inserting a new element into a red-black tree:
-
The
newNode
be:New node
-
Let y be the leaf (ie.
NIL
) andx
be the root of the tree. The new node is inserted in the following tree.Initial tree
-
Check if the tree is empty (ie. whether
x
isNIL
). If yes, insertnewNode
as a root node and color it black. -
Else, repeat steps following steps until leaf (
NIL
) is reached.-
Compare
newKey
withrootKey
. -
If
newKey
is greater thanrootKey
, traverse through the right subtree. -
Else traverse through the left subtree.
Path leading to the node where newNode is to be inserted
-
-
Assign the parent of the leaf as parent of
newNode
. -
If
leafKey
is greater thannewKey
, makenewNode
asrightChild
. -
Else, make
newNode
asleftChild
.New node inserted
-
Assign
NULL
to the left andrightChild
ofnewNode
. -
Assign RED color to
newNode
.Set the color of the newNode red and assign null to the children
-
Call InsertFix-algorithm to maintain the property of red-black tree if violated.
Why newly inserted nodes are always red in a red-black tree?
This is because inserting a red node does not violate the depth property of a red-black tree.
If you attach a red node to a red node, then the rule is violated but it is easier to fix this problem than the problem introduced by violating the depth property.
Algorithm to Maintain Red-Black Property After Insertion
This algorithm is used for maintaining the property of a red-black tree if insertion of a newNode violates this property.
-
Do the following until the parent of
newNode
p
is RED. -
If
p
is the left child ofgrandParent
gP
ofnewNode
, do the following.
Case-I:-
If the color of the right child of
gP
ofnewNode
is RED, set the color of both the children ofgP
as BLACK and the color ofgP
as RED.Color change
-
Assign
gP
tonewNode
.Reassigning newNode
Case-II:
-
(Before moving on to this step, while loop is checked. If conditions are not satisfied, it the loop is broken.)
Else ifnewNode
is the right child ofp
then, assignp
tonewNode
.Assigning parent of newNode as newNode
-
Left-Rotate
newNode
.Left Rotate
Case-III:
-
(Before moving on to this step, while loop is checked. If conditions are not satisfied, it the loop is broken.)
Set color ofp
as BLACK and color ofgP
as RED.Color change
-
Right-Rotate
gP
.Right Rotate
-
-
Else, do the following.
- If the color of the left child of
gP
ofz
is RED, set the color of both the children ofgP
as BLACK and the color ofgP
as RED. - Assign
gP
tonewNode
. - Else if
newNode
is the left child ofp
then, assignp
tonewNode
and Right-RotatenewNode
. - Set color of
p
as BLACK and color ofgP
as RED. - Left-Rotate
gP
.
- If the color of the left child of
-
(This step is performed after coming out of the while loop.)
Set the root of the tree as BLACK.Set root’s color black
The final tree look like this:
Final tree
Delete
Red-Black tree is a self-balancing binary search tree in which each node contains an extra bit for denoting the color of the node, either red or black.
Before reading this article, please refer to the article on red-black tree.
Deleting a node may or may not disrupt the red-black properties of a red-black tree. If this action violates the red-black properties, then a fixing algorithm is used to regain the red-black properties.
Deleting an element from a Red-Black Tree
This operation removes a node from the tree. After deleting a node, the red-black property is maintained again.
-
Let the
nodeToBeDeleted
be:Node to be deleted
-
Save the color of nodeToBeDeleted in origrinalColor.
Saving original color
-
If the left child of nodeToBeDeleted is
NULL
-
Assign the right child of nodeToBeDeleted to x.
Assign x to the rightChild
-
Transplant nodeToBeDeleted with x.
Transplant nodeToBeDeleted with x
-
-
Else if the right child of nodeToBeDeleted is
NULL
- Assign the left child of nodeToBeDeleted into x.
- Transplant nodeToBeDeleted with x.
-
Else
- Assign the minimum of right subtree of noteToBeDeleted into y.
- Save the color of y in originalColor.
- Assign the rightChild of y into x.
- If y is a child of nodeToBeDeleted, then set the parent of x as y.
- Else, transplant y with rightChild of y.
- Transplant nodeToBeDeleted with y.
- Set the color of y with originalColor.
-
If the originalColor is BLACK, call DeleteFix(x).
Algorithm to maintain Red-Black property after deletion
This algorithm is implemented when a black node is deleted because it violates the black depth property of the red-black tree.
This violation is corrected by assuming that node x (which is occupying y’s original position) has an extra black. This makes node x neither red nor black. It is either doubly black or black-and-red. This violates the red-black properties.
However, the color attribute of x is not changed rather the extra black is represented in x’s pointing to the node.
The extra black can be removed if
- It reaches the root node.
- If x points to a red-black node. In this case, x is colored black.
- Suitable rotations and recolorings are performed.
Following algorithm retains the properties of a red-black tree.
- Do the following until the x is not the root of the tree and the color of x is BLACK
- If x is the left child of its parent then,
-
Assign
w
to the sibling ofx
.Assigning w
-
If the sibling of x is RED,
Case-I:-
Set the color of the right child of the parent of x as BLACK.
-
Set the color of the parent of x as RED.
Color change
-
Left-Rotate the parent of x.
Left-rotate
-
Assign the rightChild of the parent of x to w.
Reassign w
-
-
If the color of both the right and the leftChild of w is BLACK,
Case-II:- Set the color of w as RED
- Assign the parent of x to x.
-
Else if the color of the rightChild of w is BLACK
Case-III:-
Set the color of the leftChild of w as BLACK
-
Set the color of w as RED
Color change
-
Right-Rotate w.
Right rotate
-
Assign the rightChild of the parent of x to w.
Reassign w
-
-
If any of the above cases do not occur, then do the following.
Case-IV:-
Set the color of w as the color of the parent of x.
-
Set the color of the parent of parent of x as BLACK.
-
Set the color of the right child of w as BLACK.
Color change
-
Left-Rotate the parent of x.
Left-rotate
-
Set x as the root of the tree.
Set x as root
-
-
- Else same as above with right changed to left and vice versa.
- Set the color of x as BLACK.
The workflow of the above cases can be understood with the help of the flowchart below.
Flowchart for deletion operation
Implementation
Python
# Implementing Red-Black Tree in Python
import sys
# Node creation
class Node ():
def __init__(self, item):
self. item = item
self. parent = None
self. left = None
self. right = None
self. color = 1
class RedBlackTree ():
def __init__(self):
self. TNULL = Node (0)
self. TNULL. color = 0
self. TNULL. left = None
self. TNULL. right = None
self. root = self. TNULL
# Preorder
def pre_order_helper (self, node):
if node != TNULL:
sys.stdout.write (node. item + " ")
self. pre_order_helper (node. left)
self. pre_order_helper (node. right)
# Inorder
def in_order_helper (self, node):
if node != TNULL:
self. in_order_helper (node. left)
sys.stdout.write (node. item + " ")
self. in_order_helper (node. right)
# Postorder
def post_order_helper (self, node):
if node != TNULL:
self. post_order_helper (node. left)
self. post_order_helper (node. right)
sys.stdout.write (node. item + " ")
# Search the tree
def search_tree_helper (self, node, key):
if node == TNULL or key == node. item:
return node
if key < node. item:
return self. search_tree_helper (node. left, key)
return self. search_tree_helper (node. right, key)
# Balancing the tree after deletion
def delete_fix (self, x):
while x != self. root and x.color == 0:
if x == x.parent. left:
s = x.parent. right
if s.color == 1:
s.color = 0
x.parent. color = 1
self. left_rotate (x.parent)
s = x.parent. right
if s.left. color == 0 and s.right. color == 0:
s.color = 1
x = x.parent
else:
if s.right. color == 0:
s.left. color = 0
s.color = 1
self. right_rotate (s)
s = x.parent. right
s.color = x.parent. color
x.parent. color = 0
s.right. color = 0
self. left_rotate (x.parent)
x = self. root
else:
s = x.parent. left
if s.color == 1:
s.color = 0
x.parent. color = 1
self. right_rotate (x.parent)
s = x.parent. left
if s.right. color == 0 and s.right. color == 0:
s.color = 1
x = x.parent
else:
if s.left. color == 0:
s.right. color = 0
s.color = 1
self. left_rotate (s)
s = x.parent. left
s.color = x.parent. color
x.parent. color = 0
s.left. color = 0
self. right_rotate (x.parent)
x = self. root
x.color = 0
def __rb_transplant (self, u, v):
if u.parent == None:
self. root = v
elif u == u.parent. left:
u.parent. left = v
else:
u.parent. right = v
v.parent = u.parent
# Node deletion
def delete_node_helper (self, node, key):
`z` = self. TNULL
while node != self. TNULL:
if node. item == key:
`z` = node
if node. item <= key:
node = node. right
else:
node = node. left
if `z` == self. TNULL:
print ("Cannot find key in the tree")
return
y = `z`
y_original_color = y.color
if `z`.left == self. TNULL:
x = `z`.right
self.__rb_transplant (`z`, `z`.right)
elif (`z`.right == self. TNULL):
x = `z`.left
self.__rb_transplant (`z`, `z`.left)
else:
y = self.minimum (`z`.right)
y_original_color = y.color
x = y.right
if y.parent == `z`:
x.parent = y
else:
self.__rb_transplant (y, y.right)
y.right = `z`.right
y.right. parent = y
self.__rb_transplant (`z`, y)
y.left = `z`.left
y.left. parent = y
y.color = `z`.color
if y_original_color == 0:
self. delete_fix (x)
# Balance the tree after insertion
def fix_insert (self, k):
while k.parent. color == 1:
if k.parent == k.parent. parent. right:
u = k.parent. parent. left
if u.color == 1:
u.color = 0
k.parent. color = 0
k.parent. parent. color = 1
k = k.parent. parent
else:
if k == k.parent. left:
k = k.parent
self. right_rotate (k)
k.parent. color = 0
k.parent. parent. color = 1
self. left_rotate (k.parent. parent)
else:
u = k.parent. parent. right
if u.color == 1:
u.color = 0
k.parent. color = 0
k.parent. parent. color = 1
k = k.parent. parent
else:
if k == k.parent. right:
k = k.parent
self. left_rotate (k)
k.parent. color = 0
k.parent. parent. color = 1
self. right_rotate (k.parent. parent)
if k == self. root:
break
self. root. color = 0
# Printing the tree
def __print_helper (self, node, indent, last):
if node != self. TNULL:
sys.stdout.write (indent)
if last:
sys.stdout.write ("R----")
indent += " "
else:
sys.stdout.write ("L----")
indent += "| "
s_color = "RED" if node. color == 1 else "BLACK"
print (str (node. item) + " (" + s_color + ")")
self.__print_helper (node. left, indent, False)
self.__print_helper (node. right, indent, True)
def preorder (self):
self. pre_order_helper (self. root)
def inorder (self):
self. in_order_helper (self. root)
def postorder (self):
self. post_order_helper (self. root)
def searchTree (self, k):
return self. search_tree_helper (self. root, k)
def minimum (self, node):
while node. left != self. TNULL:
node = node. left
return node
def maximum (self, node):
while node. right != self. TNULL:
node = node. right
return node
def successor (self, x):
if x.right != self. TNULL:
return self.minimum (x.right)
y = x.parent
while y != self. TNULL and x == y.right:
x = y
y = y.parent
return y
def predecessor (self, x):
if (x.left != self. TNULL):
return self.maximum (x.left)
y = x.parent
while y != self. TNULL and x == y.left:
x = y
y = y.parent
return y
def left_rotate (self, x):
y = x.right
x.right = y.left
if y.left != self. TNULL:
y.left. parent = x
y.parent = x.parent
if x.parent == None:
self. root = y
elif x == x.parent. left:
x.parent. left = y
else:
x.parent. right = y
y.left = x
x.parent = y
def right_rotate (self, x):
y = x.left
x.left = y.right
if y.right != self. TNULL:
y.right. parent = x
y.parent = x.parent
if x.parent == None:
self. root = y
elif x == x.parent. right:
x.parent. right = y
else:
x.parent. left = y
y.right = x
x.parent = y
def insert (self, key):
node = Node (key)
node. parent = None
node. item = key
node. left = self. TNULL
node. right = self. TNULL
node. color = 1
y = None
x = self. root
while x != self. TNULL:
y = x
if node. item < x.item:
x = x.left
else:
x = x.right
node. parent = y
if y == None:
self. root = node
elif node. item < y.item:
y.left = node
else:
y.right = node
if node. parent == None:
node. color = 0
return
if node. parent. parent == None:
return
self. fix_insert (node)
def get_root (self):
return self. root
def delete_node (self, item):
self. delete_node_helper (self. root, item)
def print_tree (self):
self.__print_helper (self. root, "", True)
if __name__ == "__main__":
bst = RedBlackTree ()
bst.insert (55)
bst.insert (40)
bst.insert (65)
bst.insert (60)
bst.insert (75)
bst.insert (57)
bst. print_tree ()
print ("\nAfter deleting an element")
bst. delete_node (40)
bst. print_tree ()
Java
// Implementing Red-Black Tree in Java
class Node {
int data;
Node parent;
Node left;
Node right;
int color;
}
public class RedBlackTree {
private Node root;
private Node TNULL;
// Preorder
private void preOrderHelper (Node node) {
if (node != TNULL) {
System.out.print (node. data + " ");
preOrderHelper (node. left);
preOrderHelper (node. right);
}
}
// Inorder
private void inOrderHelper (Node node) {
if (node != TNULL) {
inOrderHelper (node. left);
System.out.print (node. data + " ");
inOrderHelper (node. right);
}
}
// Post order
private void postOrderHelper (Node node) {
if (node != TNULL) {
postOrderHelper (node. left);
postOrderHelper (node. right);
System.out.print (node. data + " ");
}
}
// Search the tree
private Node searchTreeHelper (Node node, int key) {
if (node == TNULL || key == node. data) {
return node;
}
if (key < node. data) {
return searchTreeHelper (node. left, key);
}
return searchTreeHelper (node. right, key);
}
// Balance the tree after deletion of a node
private void fixDelete (Node x) {
Node s;
while (x != root && x.color == 0) {
if (x == x.parent. left) {
s = x.parent. right;
if (s.color == 1) {
s.color = 0;
x.parent. color = 1;
leftRotate (x.parent);
s = x.parent. right;
}
if (s.left. color == 0 && s.right. color == 0) {
s.color = 1;
x = x.parent;
} else {
if (s.right. color == 0) {
s.left. color = 0;
s.color = 1;
rightRotate (s);
s = x.parent. right;
}
s.color = x.parent. color;
x.parent. color = 0;
s.right. color = 0;
leftRotate (x.parent);
x = root;
}
} else {
s = x.parent. left;
if (s.color == 1) {
s.color = 0;
x.parent. color = 1;
rightRotate (x.parent);
s = x.parent. left;
}
if (s.right. color == 0 && s.right. color == 0) {
s.color = 1;
x = x.parent;
} else {
if (s.left. color == 0) {
s.right. color = 0;
s.color = 1;
leftRotate (s);
s = x.parent. left;
}
s.color = x.parent. color;
x.parent. color = 0;
s.left. color = 0;
rightRotate (x.parent);
x = root;
}
}
}
x.color = 0;
}
private void rbTransplant (Node u, Node v) {
if (u.parent == null) {
root = v;
} else if (u == u.parent. left) {
u.parent. left = v;
} else {
u.parent. right = v;
}
v.parent = u.parent;
}
private void deleteNodeHelper (Node node, int key) {
Node `z` = TNULL;
Node x, y;
while (node != TNULL) {
if (node. data == key) {
`z` = node;
}
if (node. data <= key) {
node = node. right;
} else {
node = node. left;
}
}
if (`z` == TNULL) {
System.out.println ("Couldn't find key in the tree");
return;
}
y = `z`;
int yOriginalColor = y.color;
if (`z`.left == TNULL) {
x = `z`.right;
rbTransplant (`z`, `z`.right);
} else if (`z`.right == TNULL) {
x = `z`.left;
rbTransplant (`z`, `z`.left);
} else {
y = minimum (`z`.right);
yOriginalColor = y.color;
x = y.right;
if (y.parent == `z`) {
x.parent = y;
} else {
rbTransplant (y, y.right);
y.right = `z`.right;
y.right. parent = y;
}
rbTransplant (`z`, y);
y.left = `z`.left;
y.left. parent = y;
y.color = `z`.color;
}
if (yOriginalColor == 0) {
fixDelete (x);
}
}
// Balance the node after insertion
private void fixInsert (Node k) {
Node u;
while (k.parent. color == 1) {
if (k.parent == k.parent. parent. right) {
u = k.parent. parent. left;
if (u.color == 1) {
u.color = 0;
k.parent. color = 0;
k.parent. parent. color = 1;
k = k.parent. parent;
} else {
if (k == k.parent. left) {
k = k.parent;
rightRotate (k);
}
k.parent. color = 0;
k.parent. parent. color = 1;
leftRotate (k.parent. parent);
}
} else {
u = k.parent. parent. right;
if (u.color == 1) {
u.color = 0;
k.parent. color = 0;
k.parent. parent. color = 1;
k = k.parent. parent;
} else {
if (k == k.parent. right) {
k = k.parent;
leftRotate (k);
}
k.parent. color = 0;
k.parent. parent. color = 1;
rightRotate (k.parent. parent);
}
}
if (k == root) {
break;
}
}
root. color = 0;
}
private void printHelper (Node root, String indent, boolean last) {
if (root != TNULL) {
System.out.print (indent);
if (last) {
System.out.print ("R----");
indent += " ";
} else {
System.out.print ("L----");
indent += "| ";
}
String sColor = root. color == 1 ? "RED" : "BLACK";
System.out.println (root. data + " (" + sColor + ")");
printHelper (root. left, indent, false);
printHelper (root. right, indent, true);
}
}
public RedBlackTree () {
TNULL = new Node ();
TNULL. color = 0;
TNULL. left = null;
TNULL. right = null;
root = TNULL;
}
public void preorder () {
preOrderHelper (this. root);
}
public void inorder () {
inOrderHelper (this. root);
}
public void postorder () {
postOrderHelper (this. root);
}
public Node searchTree (int k) {
return searchTreeHelper (this. root, k);
}
public Node minimum (Node node) {
while (node. left != TNULL) {
node = node. left;
}
return node;
}
public Node maximum (Node node) {
while (node. right != TNULL) {
node = node. right;
}
return node;
}
public Node successor (Node x) {
if (x.right != TNULL) {
return minimum (x.right);
}
Node y = x.parent;
while (y != TNULL && x == y.right) {
x = y;
y = y.parent;
}
return y;
}
public Node predecessor (Node x) {
if (x.left != TNULL) {
return maximum (x.left);
}
Node y = x.parent;
while (y != TNULL && x == y.left) {
x = y;
y = y.parent;
}
return y;
}
public void leftRotate (Node x) {
Node y = x.right;
x.right = y.left;
if (y.left != TNULL) {
y.left. parent = x;
}
y.parent = x.parent;
if (x.parent == null) {
this. root = y;
} else if (x == x.parent. left) {
x.parent. left = y;
} else {
x.parent. right = y;
}
y.left = x;
x.parent = y;
}
public void rightRotate (Node x) {
Node y = x.left;
x.left = y.right;
if (y.right != TNULL) {
y.right. parent = x;
}
y.parent = x.parent;
if (x.parent == null) {
this. root = y;
} else if (x == x.parent. right) {
x.parent. right = y;
} else {
x.parent. left = y;
}
y.right = x;
x.parent = y;
}
public void insert (int key) {
Node node = new Node ();
node. parent = null;
node. data = key;
node. left = TNULL;
node. right = TNULL;
node. color = 1;
Node y = null;
Node x = this. root;
while (x != TNULL) {
y = x;
if (node. data < x.data) {
x = x.left;
} else {
x = x.right;
}
}
node. parent = y;
if (y == null) {
root = node;
} else if (node. data < y.data) {
y.left = node;
} else {
y.right = node;
}
if (node. parent == null) {
node. color = 0;
return;
}
if (node. parent. parent == null) {
return;
}
fixInsert (node);
}
public Node getRoot () {
return this. root;
}
public void deleteNode (int data) {
deleteNodeHelper (this. root, data);
}
public void printTree () {
printHelper (this. root, "", true);
}
public static void main (String[] args) {
RedBlackTree bst = new RedBlackTree ();
bst.insert (55);
bst.insert (40);
bst.insert (65);
bst.insert (60);
bst.insert (75);
bst.insert (57);
bst.printTree ();
System.out.println ("\nAfter deleting: ");
bst.deleteNode (40);
bst.printTree ();
}
}
C
// Implementing Red-Black Tree in C
#include <stdio.h>
#include <stdlib.h>
enum nodeColor {
RED,
BLACK
};
struct rbNode {
int data, color;
struct rbNode *link[2];
};
struct rbNode *root = NULL;
// Create a red-black tree
struct rbNode *createNode (int data) {
struct rbNode *newnode;
newnode = (struct rbNode *) malloc (si`z`eof (struct rbNode));
newnode->data = data;
newnode->color = RED;
newnode->link[0] = newnode->link[1] = NULL;
return newnode;
}
// Insert an node
void insertion (int data) {
struct rbNode *stack[98], *ptr, *newnode, *xPtr, *yPtr;
int dir[98], ht = 0, index;
ptr = root;
if (! root) {
root = createNode (data);
return;
}
stack[ht] = root;
dir[ht++] = 0;
while (ptr != NULL) {
if (ptr->data == data) {
printf ("Duplicates Not Allowed!!\n");
return;
}
index = (data - ptr->data) > 0 ? 1 : 0;
stack[ht] = ptr;
ptr = ptr->link[index];
dir[ht++] = index;
}
stack[ht - 1]->link[index] = newnode = createNode (data);
while ((ht >= 3) && (stack[ht - 1]->color == RED)) {
if (dir[ht - 2] == 0) {
yPtr = stack[ht - 2]->link[1];
if (yPtr != NULL && yPtr->color == RED) {
stack[ht - 2]->color = RED;
stack[ht - 1]->color = yPtr->color = BLACK;
ht = ht - 2;
} else {
if (dir[ht - 1] == 0) {
yPtr = stack[ht - 1];
} else {
xPtr = stack[ht - 1];
yPtr = xPtr->link[1];
xPtr->link[1] = yPtr->link[0];
yPtr->link[0] = xPtr;
stack[ht - 2]->link[0] = yPtr;
}
xPtr = stack[ht - 2];
xPtr->color = RED;
yPtr->color = BLACK;
xPtr->link[0] = yPtr->link[1];
yPtr->link[1] = xPtr;
if (xPtr == root) {
root = yPtr;
} else {
stack[ht - 3]->link[dir[ht - 3]] = yPtr;
}
break;
}
} else {
yPtr = stack[ht - 2]->link[0];
if ((yPtr != NULL) && (yPtr->color == RED)) {
stack[ht - 2]->color = RED;
stack[ht - 1]->color = yPtr->color = BLACK;
ht = ht - 2;
} else {
if (dir[ht - 1] == 1) {
yPtr = stack[ht - 1];
} else {
xPtr = stack[ht - 1];
yPtr = xPtr->link[0];
xPtr->link[0] = yPtr->link[1];
yPtr->link[1] = xPtr;
stack[ht - 2]->link[1] = yPtr;
}
xPtr = stack[ht - 2];
yPtr->color = BLACK;
xPtr->color = RED;
xPtr->link[1] = yPtr->link[0];
yPtr->link[0] = xPtr;
if (xPtr == root) {
root = yPtr;
} else {
stack[ht - 3]->link[dir[ht - 3]] = yPtr;
}
break;
}
}
}
root->color = BLACK;
}
// Delete a node
void deletion (int data) {
struct rbNode *stack[98], *ptr, *xPtr, *yPtr;
struct rbNode *pPtr, *qPtr, *rPtr;
int dir[98], ht = 0, diff, i;
enum nodeColor color;
if (! root) {
printf ("Tree not available\n");
return;
}
ptr = root;
while (ptr != NULL) {
if ((data - ptr->data) == 0)
break;
diff = (data - ptr->data) > 0 ? 1 : 0;
stack[ht] = ptr;
dir[ht++] = diff;
ptr = ptr->link[diff];
}
if (ptr->link[1] == NULL) {
if ((ptr == root) && (ptr->link[0] == NULL)) {
free (ptr);
root = NULL;
} else if (ptr == root) {
root = ptr->link[0];
free (ptr);
} else {
stack[ht - 1]->link[dir[ht - 1]] = ptr->link[0];
}
} else {
xPtr = ptr->link[1];
if (xPtr->link[0] == NULL) {
xPtr->link[0] = ptr->link[0];
color = xPtr->color;
xPtr->color = ptr->color;
ptr->color = color;
if (ptr == root) {
root = xPtr;
} else {
stack[ht - 1]->link[dir[ht - 1]] = xPtr;
}
dir[ht] = 1;
stack[ht++] = xPtr;
} else {
i = ht++;
while (1) {
dir[ht] = 0;
stack[ht++] = xPtr;
yPtr = xPtr->link[0];
if (! yPtr->link[0])
break;
xPtr = yPtr;
}
dir[i] = 1;
stack[i] = yPtr;
if (i > 0)
stack[i - 1]->link[dir[i - 1]] = yPtr;
yPtr->link[0] = ptr->link[0];
xPtr->link[0] = yPtr->link[1];
yPtr->link[1] = ptr->link[1];
if (ptr == root) {
root = yPtr;
}
color = yPtr->color;
yPtr->color = ptr->color;
ptr->color = color;
}
}
if (ht < 1)
return;
if (ptr->color == BLACK) {
while (1) {
pPtr = stack[ht - 1]->link[dir[ht - 1]];
if (pPtr && pPtr->color == RED) {
pPtr->color = BLACK;
break;
}
if (ht < 2)
break;
if (dir[ht - 2] == 0) {
rPtr = stack[ht - 1]->link[1];
if (! rPtr)
break;
if (rPtr->color == RED) {
stack[ht - 1]->color = RED;
rPtr->color = BLACK;
stack[ht - 1]->link[1] = rPtr->link[0];
rPtr->link[0] = stack[ht - 1];
if (stack[ht - 1] == root) {
root = rPtr;
} else {
stack[ht - 2]->link[dir[ht - 2]] = rPtr;
}
dir[ht] = 0;
stack[ht] = stack[ht - 1];
stack[ht - 1] = rPtr;
ht++;
rPtr = stack[ht - 1]->link[1];
}
if ((! rPtr->link[0] || rPtr->link[0]->color == BLACK) &&
(! rPtr->link[1] || rPtr->link[1]->color == BLACK)) {
rPtr->color = RED;
} else {
if (! rPtr->link[1] || rPtr->link[1]->color == BLACK) {
qPtr = rPtr->link[0];
rPtr->color = RED;
qPtr->color = BLACK;
rPtr->link[0] = qPtr->link[1];
qPtr->link[1] = rPtr;
rPtr = stack[ht - 1]->link[1] = qPtr;
}
rPtr->color = stack[ht - 1]->color;
stack[ht - 1]->color = BLACK;
rPtr->link[1]->color = BLACK;
stack[ht - 1]->link[1] = rPtr->link[0];
rPtr->link[0] = stack[ht - 1];
if (stack[ht - 1] == root) {
root = rPtr;
} else {
stack[ht - 2]->link[dir[ht - 2]] = rPtr;
}
break;
}
} else {
rPtr = stack[ht - 1]->link[0];
if (! rPtr)
break;
if (rPtr->color == RED) {
stack[ht - 1]->color = RED;
rPtr->color = BLACK;
stack[ht - 1]->link[0] = rPtr->link[1];
rPtr->link[1] = stack[ht - 1];
if (stack[ht - 1] == root) {
root = rPtr;
} else {
stack[ht - 2]->link[dir[ht - 2]] = rPtr;
}
dir[ht] = 1;
stack[ht] = stack[ht - 1];
stack[ht - 1] = rPtr;
ht++;
rPtr = stack[ht - 1]->link[0];
}
if ((! rPtr->link[0] || rPtr->link[0]->color == BLACK) &&
(! rPtr->link[1] || rPtr->link[1]->color == BLACK)) {
rPtr->color = RED;
} else {
if (! rPtr->link[0] || rPtr->link[0]->color == BLACK) {
qPtr = rPtr->link[1];
rPtr->color = RED;
qPtr->color = BLACK;
rPtr->link[1] = qPtr->link[0];
qPtr->link[0] = rPtr;
rPtr = stack[ht - 1]->link[0] = qPtr;
}
rPtr->color = stack[ht - 1]->color;
stack[ht - 1]->color = BLACK;
rPtr->link[0]->color = BLACK;
stack[ht - 1]->link[0] = rPtr->link[1];
rPtr->link[1] = stack[ht - 1];
if (stack[ht - 1] == root) {
root = rPtr;
} else {
stack[ht - 2]->link[dir[ht - 2]] = rPtr;
}
break;
}
}
ht--;
}
}
}
// Print the inorder traversal of the tree
void inorderTraversal (struct rbNode *node) {
if (node) {
inorderTraversal (node->link[0]);
printf ("%d ", node->data);
inorderTraversal (node->link[1]);
}
return;
}
// Driver code
int main () {
int ch, data;
while (1) {
printf ("1. Insertion\t2. Deletion\n");
printf ("3. Traverse\t4. Exit");
printf ("\nEnter your choice: ");
scanf ("%d", &ch);
switch (ch) {
case 1:
printf ("Enter the element to insert: ");
scanf ("%d", &data);
insertion (data);
break;
case 2:
printf ("Enter the element to delete: ");
scanf ("%d", &data);
deletion (data);
break;
case 3:
inorderTraversal (root);
printf ("\n");
break;
case 4:
exit (0);
default:
printf ("Not available\n");
break;
}
printf ("\n");
}
return 0;
}
Cpp
// Implementing Red-Black Tree in C++
#include <iostream>
using namespace std;
struct Node {
int data;
Node *parent;
Node *left;
Node *right;
int color;
};
typedef Node *NodePtr;
class RedBlackTree {
private:
NodePtr root;
NodePtr TNULL;
void initiali`z`eNULLNode (NodePtr node, NodePtr parent) {
node->data = 0;
node->parent = parent;
node->left = nullptr;
node->right = nullptr;
node->color = 0;
}
// Preorder
void preOrderHelper (NodePtr node) {
if (node != TNULL) {
cout << node->data << " ";
preOrderHelper (node->left);
preOrderHelper (node->right);
}
}
// Inorder
void inOrderHelper (NodePtr node) {
if (node != TNULL) {
inOrderHelper (node->left);
cout << node->data << " ";
inOrderHelper (node->right);
}
}
// Post order
void postOrderHelper (NodePtr node) {
if (node != TNULL) {
postOrderHelper (node->left);
postOrderHelper (node->right);
cout << node->data << " ";
}
}
NodePtr searchTreeHelper (NodePtr node, int key) {
if (node == TNULL || key == node->data) {
return node;
}
if (key < node->data) {
return searchTreeHelper (node->left, key);
}
return searchTreeHelper (node->right, key);
}
// For balancing the tree after deletion
void deleteFix (NodePtr x) {
NodePtr s;
while (x != root && x->color == 0) {
if (x == x->parent->left) {
s = x->parent->right;
if (s->color == 1) {
s->color = 0;
x->parent->color = 1;
leftRotate (x->parent);
s = x->parent->right;
}
if (s->left->color == 0 && s->right->color == 0) {
s->color = 1;
x = x->parent;
} else {
if (s->right->color == 0) {
s->left->color = 0;
s->color = 1;
rightRotate (s);
s = x->parent->right;
}
s->color = x->parent->color;
x->parent->color = 0;
s->right->color = 0;
leftRotate (x->parent);
x = root;
}
} else {
s = x->parent->left;
if (s->color == 1) {
s->color = 0;
x->parent->color = 1;
rightRotate (x->parent);
s = x->parent->left;
}
if (s->right->color == 0 && s->right->color == 0) {
s->color = 1;
x = x->parent;
} else {
if (s->left->color == 0) {
s->right->color = 0;
s->color = 1;
leftRotate (s);
s = x->parent->left;
}
s->color = x->parent->color;
x->parent->color = 0;
s->left->color = 0;
rightRotate (x->parent);
x = root;
}
}
}
x->color = 0;
}
void rbTransplant (NodePtr u, NodePtr v) {
if (u->parent == nullptr) {
root = v;
} else if (u == u->parent->left) {
u->parent->left = v;
} else {
u->parent->right = v;
}
v->parent = u->parent;
}
void deleteNodeHelper (NodePtr node, int key) {
NodePtr `z` = TNULL;
NodePtr x, y;
while (node != TNULL) {
if (node->data == key) {
`z` = node;
}
if (node->data <= key) {
node = node->right;
} else {
node = node->left;
}
}
if (`z` == TNULL) {
cout << "Key not found in the tree" << endl;
return;
}
y = `z`;
int y_original_color = y->color;
if (`z`->left == TNULL) {
x = `z`->right;
rbTransplant (`z`, `z`->right);
} else if (`z`->right == TNULL) {
x = `z`->left;
rbTransplant (`z`, `z`->left);
} else {
y = minimum (`z`->right);
y_original_color = y->color;
x = y->right;
if (y->parent == `z`) {
x->parent = y;
} else {
rbTransplant (y, y->right);
y->right = `z`->right;
y->right->parent = y;
}
rbTransplant (`z`, y);
y->left = `z`->left;
y->left->parent = y;
y->color = `z`->color;
}
delete `z`;
if (y_original_color == 0) {
deleteFix (x);
}
}
// For balancing the tree after insertion
void insertFix (NodePtr k) {
NodePtr u;
while (k->parent->color == 1) {
if (k->parent == k->parent->parent->right) {
u = k->parent->parent->left;
if (u->color == 1) {
u->color = 0;
k->parent->color = 0;
k->parent->parent->color = 1;
k = k->parent->parent;
} else {
if (k == k->parent->left) {
k = k->parent;
rightRotate (k);
}
k->parent->color = 0;
k->parent->parent->color = 1;
leftRotate (k->parent->parent);
}
} else {
u = k->parent->parent->right;
if (u->color == 1) {
u->color = 0;
k->parent->color = 0;
k->parent->parent->color = 1;
k = k->parent->parent;
} else {
if (k == k->parent->right) {
k = k->parent;
leftRotate (k);
}
k->parent->color = 0;
k->parent->parent->color = 1;
rightRotate (k->parent->parent);
}
}
if (k == root) {
break;
}
}
root->color = 0;
}
void printHelper (NodePtr root, string indent, bool last) {
if (root != TNULL) {
cout << indent;
if (last) {
cout << "R----";
indent += " ";
} else {
cout << "L----";
indent += "| ";
}
string sColor = root->color ? "RED" : "BLACK";
cout << root->data << " (" << sColor << ")" << endl;
printHelper (root->left, indent, false);
printHelper (root->right, indent, true);
}
}
public:
RedBlackTree () {
TNULL = new Node;
TNULL->color = 0;
TNULL->left = nullptr;
TNULL->right = nullptr;
root = TNULL;
}
void preorder () {
preOrderHelper (this->root);
}
void inorder () {
inOrderHelper (this->root);
}
void postorder () {
postOrderHelper (this->root);
}
NodePtr searchTree (int k) {
return searchTreeHelper (this->root, k);
}
NodePtr minimum (NodePtr node) {
while (node->left != TNULL) {
node = node->left;
}
return node;
}
NodePtr maximum (NodePtr node) {
while (node->right != TNULL) {
node = node->right;
}
return node;
}
NodePtr successor (NodePtr x) {
if (x->right != TNULL) {
return minimum (x->right);
}
NodePtr y = x->parent;
while (y != TNULL && x == y->right) {
x = y;
y = y->parent;
}
return y;
}
NodePtr predecessor (NodePtr x) {
if (x->left != TNULL) {
return maximum (x->left);
}
NodePtr y = x->parent;
while (y != TNULL && x == y->left) {
x = y;
y = y->parent;
}
return y;
}
void leftRotate (NodePtr x) {
NodePtr y = x->right;
x->right = y->left;
if (y->left != TNULL) {
y->left->parent = x;
}
y->parent = x->parent;
if (x->parent == nullptr) {
this->root = y;
} else if (x == x->parent->left) {
x->parent->left = y;
} else {
x->parent->right = y;
}
y->left = x;
x->parent = y;
}
void rightRotate (NodePtr x) {
NodePtr y = x->left;
x->left = y->right;
if (y->right != TNULL) {
y->right->parent = x;
}
y->parent = x->parent;
if (x->parent == nullptr) {
this->root = y;
} else if (x == x->parent->right) {
x->parent->right = y;
} else {
x->parent->left = y;
}
y->right = x;
x->parent = y;
}
// Inserting a node
void insert (int key) {
NodePtr node = new Node;
node->parent = nullptr;
node->data = key;
node->left = TNULL;
node->right = TNULL;
node->color = 1;
NodePtr y = nullptr;
NodePtr x = this->root;
while (x != TNULL) {
y = x;
if (node->data < x->data) {
x = x->left;
} else {
x = x->right;
}
}
node->parent = y;
if (y == nullptr) {
root = node;
} else if (node->data < y->data) {
y->left = node;
} else {
y->right = node;
}
if (node->parent == nullptr) {
node->color = 0;
return;
}
if (node->parent->parent == nullptr) {
return;
}
insertFix (node);
}
NodePtr getRoot () {
return this->root;
}
void deleteNode (int data) {
deleteNodeHelper (this->root, data);
}
void printTree () {
if (root) {
printHelper (this->root, "", true);
}
}
};
int main () {
RedBlackTree bst;
bst.insert (55);
bst.insert (40);
bst.insert (65);
bst.insert (60);
bst.insert (75);
bst.insert (57);
bst.printTree ();
cout << endl
<< "After deleting" << endl;
bst.deleteNode (40);
bst.printTree ();
}
Red-Black Tree Applications
- To implement finite maps
- To implement Java packages:
java.util.TreeMap
andjava.util.TreeSet
- To implement Standard Template Libraries (STL) in C++: multiset, map, multimap
- In Linux Kernel (CPU scheduling - CFS)