注意力评分函数
上一节 使用了高斯核来对查询和键之间的关系建模。其中的高斯核指数部分 (式9.2.6
)可以视为注意力评分函数(attention scoring function),简称评分函数(scoring function),然后把这个函数的输出结果输入到 softmax 函数中进行运算。通过上述步骤,将得到与键对应的值的概率分布(即注意力权重)。最后,注意力汇聚的输出就是基于这些注意力权重的值的加权和。
从宏观来看,上述算法可以用来实现 9.1 节 中的注意力机制框架。下图说明了如何将注意力汇聚的输出计算成为值的加权和:
- 其中 表示注意力评分函数。由于注意力权重是概率分布,因此加权和其本质上是加权平均值。
用数学语言描述,假设有一个查询 和 个“键-值”对 ,其中 ,。注意力汇聚函数 就被表示成值的加权和:
其中查询 和键 的注意力权重(标量)是通过注意力评分函数 将两个向量映射成标量,再经过 softmax 运算得到的:
正如上图所示,选择不同的注意力评分函数会导致不同的注意力汇聚操作。本节将介绍两个流行的评分函数,稍后将用他们来实现更复杂的注意力机制。
from d2l import torch as d2l
import math
import torch
from torch import nn
掩蔽softmax操作
正如上面提到的,softmax 操作用于输出一个概率分布作为注意力权重。在某些情况下,并非所有的值都应该被纳入到注意力汇聚中。例如,为了在 机器翻译 中高效处理小批量数据集,某些文本序列被填充了没有意义的特殊词元。为了仅将有意义的词元作为值来获取注意力汇聚,可以指定一个有效序列长度(即词元的个数),以便在计算 softmax 时过滤掉超出指定范围的位置。下面的 masked_softmax
函数实现了这样的掩蔽 softmax 操作(masked softmax operation),其中任何超出有效长度的位置都被掩蔽并置为0。
#@save
def masked_softmax(X, valid_lens):
"""通过在最后一个轴上掩蔽元素来执行softmax操作"""
# X:3D张量,valid_lens:1D或2D张量
if valid_lens is None:
return nn.functional.softmax(X, dim=-1)
else:
shape = X.shape
if valid_lens.dim() == 1:
valid_lens = torch.repeat_interleave(valid_lens, shape[1])
else:
valid_lens = valid_lens.reshape(-1)
# 最后一轴上被掩蔽的元素使用一个非常大的负值替换,从而其softmax输出为0
X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_lens,
value=-1e6)
return nn.functional.softmax(X.reshape(shape), dim=-1)
为了演示此函数是如何工作的,考虑由两个 矩阵表示的样本,这两个样本的有效长度分别为 和 。经过掩蔽 softmax 操作,超出有效长度的值都被掩蔽为0。
masked_softmax(torch.rand(2, 2, 4), torch.tensor([2, 3]))
同样,也可以使用二维张量,为矩阵样本中的每一行指定有效长度。
masked_softmax(torch.rand(2, 2, 4), d2l.tensor([[1, 3], [2, 4]]))
加性注意力
一般来说,当查询和键是不同长度的矢量时,可以使用加性注意力作为评分函数。 给定查询 和键 ,加性注意力(additive attention)的评分函数为
其中可学习的参数是 、 和 。如上式所示,将查询和键连结起来后输入到一个多层感知机(MLP)中,感知机包含一个隐藏层,其隐藏单元数是一个超参数 。通过使用 作为激活函数,并且禁用偏置项。
下面来实现加性注意力。
#@save
class AdditiveAttention(nn.Module):
"""加性注意力"""
def __init__(self, key_size, query_size, num_hiddens, dropout, **kwargs):
super(AdditiveAttention, self).__init__(**kwargs)
self.W_k = nn.Linear(key_size, num_hiddens, bias=False)
self.W_q = nn.Linear(query_size, num_hiddens, bias=False)
self.w_v = nn.Linear(num_hiddens, 1, bias=False)
self.dropout = nn.Dropout(dropout)
def forward(self, queries, keys, values, valid_lens):
queries, keys = self.W_q(queries), self.W_k(keys)
# 在维度扩展后,
# queries的形状:(batch_size,查询的个数,1,num_hidden)
# key的形状:(batch_size,1,“键-值”对的个数,num_hiddens)
# 使用广播方式进行求和
features = queries.unsqueeze(2) + keys.unsqueeze(1)
features = torch.tanh(features)
# self.w_v仅有一个输出,因此从形状中移除最后那个维度。
# scores的形状:(batch_size,查询的个数,“键-值”对的个数)
scores = self.w_v(features).squeeze(-1)
self.attention_weights = masked_softmax(scores, valid_lens)
# values的形状:(batch_size,“键-值”对的个数,值的维度)
return torch.bmm(self.dropout(self.attention_weights), values)
用一个小例子来演示上面的 AdditiveAttention
类,其中查询、键和值的形状为(批量大小,步数或词元序列长度,特征大小),实际输出为 、 和 。注意力汇聚输出的形状为(批量大小,查询的步数,值的维度)。
queries, keys = d2l.normal(0, 1, (2, 1, 20)), d2l.ones((2, 10, 2))
# values的小批量,两个值矩阵是相同的
values = torch.arange(40, dtype=torch.float32).reshape(1, 10, 4).repeat(
2, 1, 1)
valid_lens = d2l.tensor([2, 6])
attention = AdditiveAttention(key_size=2, query_size=20, num_hiddens=8,
dropout=0.1)
attention.eval()
attention(queries, keys, values, valid_lens)
tensor([[[ 2.0000, 3.0000, 4.0000, 5.0000]],
[[10.0000, 11.0000, 12.0000, 13.0000]]], grad_fn=<BmmBackward0>)
尽管加性注意力包含了可学习的参数,但由于本例子中每个键都是相同的,所以注意力权重是均匀的,由指定的有效长度决定。
d2l.show_heatmaps(d2l.reshape(attention.attention_weights, (1, 1, 2, 10)),
xlabel='Keys', ylabel='Queries')
缩放点积注意力
使用点积可以得到计算效率更高的评分函数,但是点积操作要求查询和键具有相同的长度 。假设查询和键的所有元素都是独立的随机变量,并且都满足零均值和单位方差,那么两个向量的点积的均值为 ,方差为 。为确保无论向量长度如何,点积的方差在不考虑向量长度的情况下仍然是 ,我们再将点积除以 ,则缩放点积注意力(scaled dot-product attention)评分函数为:
在实践中,我们通常从小批量的角度来考虑提高效率,例如基于 个查询和 个键-值对计算注意力,其中查询和键的长度为 ,值的长度为 。查询 、键 和值 的缩放点积注意力是:
下面的缩放点积注意力的实现使用了暂退法进行模型正则化。
#@save
class DotProductAttention(nn.Module):
"""缩放点积注意力"""
def __init__(self, dropout, **kwargs):
super(DotProductAttention, self).__init__(**kwargs)
self.dropout = nn.Dropout(dropout)
# queries的形状:(batch_size,查询的个数,d)
# keys的形状:(batch_size,“键-值”对的个数,d)
# values的形状:(batch_size,“键-值”对的个数,值的维度)
# valid_lens的形状:(batch_size,)或者(batch_size,查询的个数)
def forward(self, queries, keys, values, valid_lens=None):
d = queries.shape[-1]
# 设置transpose_b=True为了交换keys的最后两个维度
scores = torch.bmm(queries, keys.transpose(1,2)) / math.sqrt(d)
self.attention_weights = masked_softmax(scores, valid_lens)
return torch.bmm(self.dropout(self.attention_weights), values)
为了演示上述的 DotProductAttention
类,我们使用与先前加性注意力例子中相同的键、值和有效长度。对于点积操作,我们令查询的特征维度与键的特征维度大小相同。
queries = d2l.normal(0, 1, (2, 1, 2))
attention = DotProductAttention(dropout=0.5)
attention.eval()
attention(queries, keys, values, valid_lens)
tensor([[[ 2.0000, 3.0000, 4.0000, 5.0000]],
[[10.0000, 11.0000, 12.0000, 13.0000]]])
与加性注意力演示相同,由于键包含的是相同的元素,而这些元素无法通过任何查询进行区分,因此获得了均匀的注意力权重。
d2l.show_heatmaps(d2l.reshape(attention.attention_weights, (1, 1, 2, 10)),
xlabel='Keys', ylabel='Queries')
小结
- 将注意力汇聚的输出计算可以作为值的加权平均,选择不同的注意力评分函数会带来不同的注意力汇聚操作。
- 当查询和键是不同长度的矢量时,可以使用可加性注意力评分函数。当它们的长度相同时,使用缩放的“点-积”注意力评分函数的计算效率更高。
练习
- 修改小例子中的键,并且可视化注意力权重。可加性注意力和缩放的“点-积”注意力是否仍然产生相同的结果?为什么?
- 只使用矩阵乘法,能否为具有不同矢量长度的查询和键设计新的评分函数?
- 当查询和键具有相同的矢量长度时,矢量求和作为评分函数是否比“点-积”更好?为什么?
:begin_tab:mxnet
Discussions
:end_tab:
:begin_tab:pytorch
Discussions
:end_tab:
:begin_tab:paddle
Discussions
:end_tab: