参数管理
在选择了架构并设置了超参数后,我们就进入了训练阶段。此时,我们的目标是找到使损失函数最小化的模型参数值。经过训练后,我们将需要使用这些参数来做出未来的预测。此外,有时我们希望提取参数,以便在其他环境中复用它们,将模型保存下来,以便它可以在其他软件中执行,或者为了获得科学的理解而进行检查。
之前的介绍中,我们只依靠深度学习框架来完成训练的工作,而忽略了操作参数的具体细节。本节,我们将介绍以下内容:
- 访问参数,用于调试、诊断和可视化;
- 参数初始化;
- 在不同模型组件间共享参数。
我们首先看一下具有单隐藏层的多层感知机。
参数访问
我们从已有模型中访问参数。当通过 Sequential
类定义模型时,我们可以通过索引来访问模型的任意层。这就像模型是一个列表一样,每层的参数都在其属性中。如下所示,我们可以检查第二个全连接层的参数。
输出的结果告诉我们一些重要的事情:首先,这个全连接层包含两个参数,分别是该层的权重和偏置。两者都存储为单精度浮点数(float32)。注意,参数名称允许唯一标识每个参数,即使在包含数百个层的网络中也是如此。
目标参数
注意,每个参数都表示为参数类的一个实例。要对参数执行任何操作,首先我们需要访问底层的数值。有几种方法可以做到这一点。有些比较简单,而另一些则比较通用。下面的代码从第二个全连接层(即第三个神经网络层)提取偏置,提取后返回的是一个参数类实例,并进一步访问该参数的值。
参数是复合的对象,包含值、梯度和额外信息。这就是我们需要显式参数值的原因。除了值之外,我们还可以访问每个参数的梯度。在上面这个网络中,由于我们还没有调用反向传播,所以参数的梯度处于初始状态。
一次性访问所有参数
当我们需要对所有参数执行操作时,逐个访问它们可能会很麻烦。当我们处理更复杂的块(例如,嵌套块)时,情况可能会变得特别复杂,因为我们需要递归整个树来提取每个子块的参数。下面,我们将通过演示来比较访问第一个全连接层的参数和访问所有层。
这为我们提供了另一种访问网络参数的方式,如下所示。
从嵌套块收集参数
让我们看看,如果我们将多个块相互嵌套,参数命名约定是如何工作的。我们首先定义一个生成块的函数(可以说是“块工厂”),然后将这些块组合到更大的块中。
设计了网络后,我们看看它是如何工作的。
因为层是分层嵌套的,所以我们也可以像通过嵌套列表索引一样访问它们。下面,我们访问第一个主要的块中、第二个子块的第一层的偏置项。
参数初始化
知道了如何访问参数后,现在我们看看如何正确地初始化参数。我们在 3.8 节 中讨论了良好初始化的必要性。深度学习框架提供默认随机初始化,也允许我们创建自定义初始化方法,满足我们通过其他规则实现初始化权重。
默认情况下,PyTorch会根据一个范围均匀地初始化权重和偏置矩阵,这个范围是根据输入和输出维度计算出的。PyTorch的nn.init
模块提供了多种预置初始化方法。
内置初始化
让我们首先调用内置的初始化器。下面的代码将所有权重参数初始化为标准差为0.01的高斯随机变量,且将偏置参数设置为0。
我们还可以将所有参数初始化为给定的常数,比如初始化为1。
我们还可以对某些块应用不同的初始化方法。例如,下面我们使用 Xavier 初始化方法初始化第一个神经网络层,然后将第三个神经网络层初始化为常量值42。
自定义初始化
有时,深度学习框架没有提供我们需要的初始化方法。在下面的例子中,我们使用以下的分布为任意权重参数 w 定义初始化方法:
w∼⎩⎨⎧U(5,10)0U(−10,−5) 可能性 41 可能性 21 可能性 41(4.2.1)
同样,我们实现了一个my_init
函数来应用到net
。
注意,我们始终可以直接设置参数。
参数绑定
有时我们希望在多个层间共享参数:我们可以定义一个稠密层,然后使用它的参数来设置另一个层的参数。
这个例子表明第三个和第五个神经网络层的参数是绑定的。它们不仅值相等,而且由相同的张量表示。因此,如果我们改变其中一个参数,另一个参数也会改变。
这里有一个问题:当参数绑定时,梯度会发生什么情况?答案是由于模型参数包含梯度,因此在反向传播期间第二个隐藏层(即第三个神经网络层)和第三个隐藏层(即第五个神经网络层)的梯度会加在一起。
小结
- 我们有几种方法可以访问、初始化和绑定模型参数。
- 我们可以使用自定义初始化方法。
练习
- 使用 上一节 中定义的
FancyMLP
模型,访问各个层的参数。
- 查看初始化模块文档以了解不同的初始化方法。
- 构建包含共享参数层的多层感知机并对其进行训练。在训练过程中,观察模型各层的参数和梯度。
- 为什么共享参数是个好主意?
Discussions