数据预处理

为了能用深度学习来解决现实世界的问题,我们经常从预处理原始数据开始,而不是从那些准备好的张量格式数据开始。在Python中常用的数据分析工具中,我们通常使用pandas软件包。像庞大的Python生态系统中的许多其他扩展包一样,pandas可以与张量兼容。本节我们将简要介绍使用pandas预处理原始数据,并将原始数据转换为张量格式的步骤。后面的章节将介绍更多的数据预处理技术。

读取数据集

举一个例子,我们首先创建一个人工数据集,并存储在 CSV(逗号分隔值)文件 ../data/house_tiny.csv 中。以其他格式存储的数据也可以通过类似的方式进行处理。下面我们将数据集按行写入 CSV 文件中。

import os
 
os.makedirs(os.path.join('..', 'data'), exist_ok=True)
data_file = os.path.join('..', 'data', 'house_tiny.csv')
with open(data_file, 'w') as f:
    f.write('NumRooms,Alley,Price\n')  # 列名
    f.write('NA,Pave,127500\n')  # 每行表示一个数据样本
    f.write('2,NA,106000\n')
    f.write('4,NA,178100\n')
    f.write('NA,NA,140000\n')

要从创建的 CSV 文件中加载原始数据集,我们导入 pandas 包并调用 read_csv 函数。该数据集有四行三列。其中每行描述了房间数量(“NumRooms”)、巷子类型(“Alley”)和房屋价格(“Price”)。

# 如果没有安装pandas,只需取消对以下行的注释来安装pandas
# !pip install pandas
import pandas as pd
 
data = pd.read_csv(data_file)
print(data)

处理缺失值

注意,“NaN”项代表缺失值。为了处理缺失的数据,典型的方法包括插值法删除法,其中插值法用一个替代值弥补缺失值,而删除法则直接忽略缺失值。 在这里,我们将考虑插值法。

通过位置索引 iloc,我们将 data 分成 inputsoutputs,其中前者为 data 的前两列,而后者为 data 的最后一列。对于 inputs 中缺少的数值,我们用同一列的均值替换“NaN”项。

inputs, outputs = data.iloc[:, 0:2], data.iloc[:, 2]
inputs = inputs.fillna(inputs.mean())
print(inputs)

对于inputs中的类别值或离散值,我们将“NaN”视为一个类别。由于“巷子类型”(“Alley”)列只接受两种类型的类别值“Pave”和“NaN”,pandas可以自动将此列转换为两列“Alley_Pave”和“Alley_nan”。巷子类型为“Pave”的行会将“Alley_Pave”的值设置为1,“Alley_nan”的值设置为0。缺少巷子类型的行会将“Alley_Pave”和“Alley_nan”分别设置为0和1。

inputs = pd.get_dummies(inputs, dummy_na=True)
print(inputs)

转换为张量格式

现在 inputsoutputs 中的所有条目都是数值类型,它们可以转换为张量格式。当数据采用张量格式后,可以通过在 数据操作 中引入的那些张量函数来进一步操作。

import torch
 
X = torch.tensor(inputs.to_numpy(dtype=float))
y = torch.tensor(outputs.to_numpy(dtype=float))
X, y

小结

  • pandas 软件包是 Python 中常用的数据分析工具中,pandas 可以与张量兼容。
  • pandas 处理缺失的数据时,我们可根据情况选择用插值法和删除法。

练习

创建包含更多行和列的原始数据集。

  1. 删除缺失值最多的列。
  2. 将预处理后的数据集转换为张量格式。

Discussions