Case 1: each arrays has the same length
Given K sorted arrays of size N each, merge them and print the sorted output.
Input: K = 3, N = 4, arr = { {1, 3, 5, 7}, {2, 4, 6, 8}, {0, 9, 10, 11}}
Output: 0 1 2 3 4 5 6 7 8 9 10 11
Explanation: The output array is a sorted array that contains all the elements of the input matrix.
Input: k = 4, n = 4, arr = { {1, 5, 6, 8}, {2, 4, 10, 12}, {3, 7, 9, 11}, {13, 14, 15, 16}}
Output: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Explanation: The output array is a sorted array that contains all the elements of the input matrix.
Approach 1: naive / BF
Create an output array of size (N * K) and then copy all the elements into the output array followed by sorting:
Create an output array of size N * K.
Traverse the matrix from start to end and insert all the elements in the output array.
Sort and print the output array.
Implementation
// C++ program to merge K sorted arrays of size n each.
#include <bits/stdc++.h>
using namespace std ;
#define N 4
// A utility function to print array elements
void printArray ( int arr [], int size )
{
for ( int i = 0 ; i < size; i ++ )
cout << arr [i] << " " ;
}
// This function takes an array of arrays as an argument and
// All arrays are assumed to be sorted. It merges them
// together and prints the final sorted output.
void mergeKArrays ( int arr [][N], int a , int output [])
{
int c = 0 ;
// traverse the matrix
for ( int i = 0 ; i < a; i ++ ) {
for ( int j = 0 ; j < N; j ++ )
output = arr [i][j];
}
// sort the array
sort (output, output + N * a);
}
// Driver's code
int main ()
{
// Change N at the top to change number of elements
// in an array
int arr[][N] = { { 2 , 6 , 12 , 34 },
{ 1 , 9 , 20 , 1000 },
{ 23 , 34 , 90 , 2000 } };
int K = sizeof (arr) / sizeof ( arr [ 0 ]);
int output [N * K];
// Function call
mergeKArrays (arr, 3 , output);
cout << "Merged array is " << endl;
printArray (output, N * K);
return 0 ;
}
# Python3 program to merge k sorted arrays of size n each.
# This function takes an array of arrays as an argument
# and
# All arrays are assumed to be sorted. It merges them
# together and prints the final sorted output.
def mergeKArrays ( arr , a , output ):
c = 0
# traverse the matrix
for i in range (a):
for j in range ( 4 ):
output = arr[i][j]
c += 1
# sort the array
output. sort ()
# A utility function to print array elements
def printArray ( arr , size ):
for i in range (size):
print (arr[i], end = " " )
# Driver's code
if __name__ == '__main__' :
arr = [[ 2 , 6 , 12 , 34 ], [ 1 , 9 , 20 , 1000 ], [ 23 , 34 , 90 , 2000 ]]
K = 4
N = 3
output = [ 0 for i in range (N * K)]
# Function call
mergeKArrays (arr, N, output)
print ( "Merged array is " )
printArray (output, N * K)
# This code is contributed by umadevi9616
Complexity
Time Complexity: O(N * K * log (N*K))
, Since the resulting array is of size N * K.
Space Complexity: O(N * K)
, The output array is of size N * K.
Approach 2: devide and conquer
The process begins with merging arrays into groups of two. After the first merge, there will be K/2 arrays remaining. Again merge arrays in groups, now K/4 arrays will be remaining. This is similar to merge sort. Divide K arrays into two halves containing an equal number of arrays until there are two arrays in a group. This is followed by merging the arrays in a bottom-up manner.
Follow the given steps to solve the problem:
Create a recursive function that takes K arrays and returns the output array.
In the recursive function, if the value of K is 1 then return the array else if the value of K is 2 then merge the two arrays in linear time and return the array.
If the value of K is greater than 2 then divide the group of k elements into two equal halves and recursively call the function, i.e 0 to K/2 array in one recursive function and K/2 to K array in another recursive function.
Print the output array.
Implementation
// C++ program to merge K sorted arrays of size n each.
#include <bits/stdc++.h>
using namespace std ;
#define N 4
// Merge arr1[0..N1-1] and arr2[0..N2-1] into
// arr3[0..N1+N2-1]
void mergeArrays ( int arr1 [], int arr2 [], int N1 , int N2 ,
int arr3 [])
{
int i = 0 , j = 0 , k = 0 ;
// Traverse both array
while (i < N1 && j < N2) {
// Check if current element of first
// array is smaller than current element
// of second array. If yes, store first
// array element and increment first array
// index. Otherwise do same with second array
if ( arr1 [i] < arr2 [j])
arr3 [k ++ ] = arr1 [i ++ ];
else
arr3 [k ++ ] = arr2 [j ++ ];
}
// Store remaining elements of first array
while (i < N1)
arr3 [k ++ ] = arr1 [i ++ ];
// Store remaining elements of second array
while (j < N2)
arr3 [k ++ ] = arr2 [j ++ ];
}
// A utility function to print array elements
void printArray ( int arr [], int size )
{
for ( int i = 0 ; i < size; i ++ )
cout << arr [i] << " " ;
}
// This function takes an array of arrays as an argument and
// All arrays are assumed to be sorted. It merges them
// together and prints the final sorted output.
void mergeKArrays ( int arr [][N], int i , int j , int output [])
{
// If one array is in range
if (i == j) {
for ( int p = 0 ; p < N; p ++ )
output [p] = arr [i][p];
return ;
}
// if only two arrays are left them merge them
if (j - i == 1 ) {
mergeArrays ( arr [i], arr [j], N, N, output);
return ;
}
// Output arrays
int out1 [N * (((i + j) / 2 ) - i + 1 )],
out2 [N * (j - ((i + j) / 2 ))];
// Divide the array into halves
mergeKArrays (arr, i, (i + j) / 2 , out1);
mergeKArrays (arr, (i + j) / 2 + 1 , j, out2);
// Merge the output array
mergeArrays (out1, out2, N * (((i + j) / 2 ) - i + 1 ),
N * (j - ((i + j) / 2 )), output);
}
// Driver's code
int main ()
{
// Change N at the top to change number of elements
// in an array
int arr[][N] = { { 2 , 6 , 12 , 34 },
{ 1 , 9 , 20 , 1000 },
{ 23 , 34 , 90 , 2000 } };
int K = sizeof (arr) / sizeof ( arr [ 0 ]);
int output [N * K];
mergeKArrays (arr, 0 , 2 , output);
// Function call
cout << "Merged array is " << endl;
printArray (output, N * K);
return 0 ;
}
Complexity
Time Complexity: O(N * K * log K). There are log K levels as in each level the K arrays are divided in half and at each level, the K arrays are traversed.
Auxiliary Space: O(N * K * log K). In each level O(N * K) space is required.
Approach 3: Min-heap
The idea is to use Min-Heap. This MinHeap based solution has the same time complexity which is O(N*K*logK)
. But for a different and particular sized array, this solution works much better. The process must start with creating a MinHeap and inserting the first element of all the k arrays . Remove the root element of Minheap and put it in the output array and insert the next element from the array of removed element. To get the result the step must continue until there is no element left in the MinHeap.
Follow the given steps to solve the problem:
Create a min Heap and insert the first element of all the K arrays.
Run a loop until the size of MinHeap is greater than zero.
Remove the top element of the MinHeap and print the element.
Now insert the next element from the same array in which the removed element belonged.
If the array doesn’t have any more elements, then replace root with infinite. After replacing the root, heapify the tree.
Return the output array
Implementation
// C++ program to merge K sorted
// arrays of size N each.
#include <bits/stdc++.h>
using namespace std ;
#define N 4
// A min-heap node
struct MinHeapNode {
// The element to be stored
int element;
// index of the array from which the element is taken
int i;
// index of the next element to be picked from the array
int j;
};
// Prototype of a utility function to swap two min-heap
// nodes
void swap ( MinHeapNode * x , MinHeapNode * y );
// A class for Min Heap
class MinHeap {
// pointer to array of elements in heap
MinHeapNode * harr;
// size of min heap
int heap_size;
public:
// Constructor: creates a min heap of given size
MinHeap ( MinHeapNode a [], int size );
// to heapify a subtree with root at given index
void MinHeapify ( int );
// to get index of left child of node at index i
int left ( int i ) { return ( 2 * i + 1 ); }
// to get index of right child of node at index i
int right ( int i ) { return ( 2 * i + 2 ); }
// to get the root
MinHeapNode getMin () { return harr [ 0 ]; }
// to replace root with new node x and heapify() new
// root
void replaceMin ( MinHeapNode x )
{
harr [ 0 ] = x;
MinHeapify ( 0 );
}
};
// This function takes an array of arrays as an argument and
// All arrays are assumed to be sorted. It merges them
// together and prints the final sorted output.
int* mergeKArrays ( int arr [][N], int K )
{
// To store output array
int * output = new int [N * K];
// Create a min heap with k heap nodes.
// Every heap node has first element of an array
MinHeapNode * harr = new MinHeapNode [K];
for ( int i = 0 ; i < K; i ++ ) {
// Store the first element
harr [i]. element = arr [i][ 0 ];
// index of array
harr [i]. i = i;
// Index of next element to be stored from the array
harr [i]. j = 1 ;
}
// Create the heap
MinHeap hp (harr, K);
// Now one by one get the minimum element from min
// heap and replace it with next element of its array
for ( int count = 0 ; count < N * K; count ++ ) {
// Get the minimum element and store it in output
MinHeapNode root = hp . getMin ();
output [count] = root . element ;
// Find the next element that will replace current
// root of heap. The next element belongs to same
// array as the current root.
if ( root . j < N) {
root . element = arr [ root . i ][ root . j ];
root . j += 1 ;
}
// If root was the last element of its array
// INT_MAX is for infinite
else
root . element = INT_MAX;
// Replace root with next element of array
hp . replaceMin (root);
}
return output;
}
// FOLLOWING ARE IMPLEMENTATIONS OF
// STANDARD MIN HEAP METHODS FROM CORMEN BOOK
// Constructor: Builds a heap from a given
// array a[] of given size
MinHeap :: MinHeap (MinHeapNode a[], int size)
{
heap_size = size;
harr = a; // store address of array
int i = (heap_size - 1 ) / 2 ;
while (i >= 0 ) {
MinHeapify (i);
i -- ;
}
}
// A recursive method to heapify a
// subtree with root at given index.
// This method assumes that the subtrees
// are already heapified
void MinHeap :: MinHeapify ( int i )
{
int l = left (i);
int r = right (i);
int smallest = i;
if (l < heap_size && harr [l]. element < harr [i]. element )
smallest = l;
if (r < heap_size
&& harr [r]. element < harr [smallest]. element )
smallest = r;
if (smallest != i) {
swap ( & harr [i], & harr [smallest]);
MinHeapify (smallest);
}
}
// A utility function to swap two elements
void swap ( MinHeapNode * x , MinHeapNode * y )
{
MinHeapNode temp = * x;
* x = * y;
* y = temp;
}
// A utility function to print array elements
void printArray ( int arr [], int size )
{
for ( int i = 0 ; i < size; i ++ )
cout << arr [i] << " " ;
}
// Driver's code
int main ()
{
// Change N at the top to change number of elements
// in an array
int arr[][N] = { { 2 , 6 , 12 , 34 },
{ 1 , 9 , 20 , 1000 },
{ 23 , 34 , 90 , 2000 } };
int K = sizeof (arr) / sizeof ( arr [ 0 ]);
// Function call
int * output = mergeKArrays (arr, K);
cout << "Merged array is " << endl;
printArray (output, N * K);
return 0 ;
}
import sys
# Python 3 program to merge K sorted
# arrays of size N each.
# A Min heap node
class MinHeapNode :
element = 0
# The element to be stored
# index of the array from
# which the element is taken
i = 0
# index of the next element
# to be picked from array
j = 0
def __init__ ( self , element , i , j ) :
self .element = element
self .i = i
self .j = j
# A class for Min Heap
class MinHeap :
harr = None
# Array of elements in heap
heap_size = 0
# Current number of elements in min heap
# Constructor: Builds a heap from
# a given array a[] of given size
def __init__ ( self , a , size ) :
self .heap_size = size
self .harr = a
i = int (( self .heap_size - 1 ) / 2 )
while (i >= 0 ) :
self . MinHeapify (i)
i -= 1
# A recursive method to heapify a subtree
# with the root at given index This method
# assumes that the subtrees are already heapified
def MinHeapify ( self , i ) :
l = self . left (i)
r = self . right (i)
smallest = i
if (l < self .heap_size and self .harr[l].element < self .harr[i].element) :
smallest = l
if (r < self .heap_size and self .harr[r].element < self .harr[smallest].element) :
smallest = r
if (smallest != i) :
self . swap ( self .harr, i, smallest)
self . MinHeapify (smallest)
# to get index of left child of node at index i
def left ( self , i ) :
return ( 2 * i + 1 )
# to get index of right child of node at index i
def right ( self , i ) :
return ( 2 * i + 2 )
# to get the root
def getMin ( self ) :
if ( self .heap_size <= 0 ) :
print ( "Heap underflow" )
return None
return self .harr[ 0 ]
# to replace root with new node
# "root" and heapify() new root
def replaceMin ( self , root ) :
self .harr[ 0 ] = root
self . MinHeapify ( 0 )
# A utility function to swap two min heap nodes
def swap ( self , arr , i , j ) :
temp = arr[i]
arr[i] = arr[j]
arr[j] = temp
# A utility function to print array elements
@ staticmethod
def printArray ( arr ) :
for i in arr :
print ( str (i) + " " , end = "" )
print ()
# This function takes an array of
# arrays as an argument and All
# arrays are assumed to be sorted.
# It merges them together and
# prints the final sorted output.
@ staticmethod
def mergeKSortedArrays ( arr , K ) :
hArr = [ None ] * (K)
resultSize = 0
i = 0
while (i < len (arr)) :
node = MinHeapNode (arr[i][ 0 ], i, 1 )
hArr[i] = node
resultSize += len (arr[i])
i += 1
# Create a min heap with k heap nodes. Every heap
# node has first element of an array
mh = MinHeap (hArr, K)
result = [ 0 ] * (resultSize)
# To store output array
# Now one by one get the minimum element from min
# heap and replace it with next element of its
# array
i = 0
while (i < resultSize) :
# Get the minimum element and store it in
# result
root = mh. getMin ()
result[i] = root.element
# Find the next element that will replace
# current root of heap. The next element
# belongs to same array as the current root.
if (root.j < len (arr[root.i])) :
root.element = arr[root.i][root.j]
root.j += 1
else :
root.element = sys.maxsize
# Replace root with next element of array
mh. replaceMin (root)
i += 1
MinHeap. printArray (result)
# Driver's code
@ staticmethod
def main ( args ) :
arr = [[ 2 , 6 , 12 , 34 ], [ 1 , 9 , 20 , 1000 ], [ 23 , 34 , 90 , 2000 ]]
print ( "Merged array is :" )
# Function call
MinHeap. mergeKSortedArrays (arr, len (arr))
if __name__ == "__main__" :
MinHeap. main ([])
# This code is contributed by aadityaburujwale.
Complexity
Time Complexity: O(N * K * log K), Insertion and deletion in a Min Heap requires log K time.
Auxiliary Space: O(K), If Output is not stored then the only space required is the Min-Heap of K elements.
Case 2: each arrays has random length
Given k sorted arrays of possibly different sizes, merge them and print the sorted output.
Examples:
Input: k = 3
arr[][] = { {1, 3},
{2, 4, 6},
{0, 9, 10, 11}} ;
Output: 0 1 2 3 4 6 9 10 11
Input: k = 2
arr[][] = { {1, 3, 20},
{2, 4, 6}} ;
Output: 1 2 3 4 6 20
We have discussed a solution that works for all arrays of the same size in Merge k sorted arrays | Set 1 .
A simple solution is to create an output array and one by one copy all k arrays to it. Finally, sort the output array. This approach takes O(N Log N) time where N is the count of all elements.
An efficient solution is to use a heap data structure. The time complexity of the heap-based solution is O(N Log k).
Create an output array.
Create a min-heap of size k and insert 1st element in all the arrays into the heap
Repeat the following steps while the priority queue is not empty.
Remove the minimum element from the heap (minimum is always at the root) and store it in the output array.
Insert the next element from the array from which the element is extracted. If the array doesn’t have any more elements, then do nothing.
Below is the implementation of the above approach:
Implementation
// C++ program to merge k sorted arrays
// of size n each.
#include <bits/stdc++.h>
using namespace std ;
// A pair of pairs, first element is going to
// store value, second element index of array
// and third element index in the array.
typedef pair < int , pair < int , int > > ppi;
// This function takes an array of arrays as an
// argument and all arrays are assumed to be
// sorted. It merges them together and prints
// the final sorted output.
vector < int > mergeKArrays ( vector < vector < int > > arr )
{
vector < int > output;
// Create a min heap with k heap nodes. Every
// heap node has first element of an array
priority_queue < ppi, vector < ppi > , greater < ppi > > pq;
for ( int i = 0 ; i < arr . size (); i ++ )
pq . push ({ arr [i][ 0 ], { i, 0 } });
// Now one by one get the minimum element
// from min heap and replace it with next
// element of its array
while ( pq . empty () == false ) {
ppi curr = pq . top ();
pq . pop ();
// i ==> Array Number
// j ==> Index in the array number
int i = curr . second . first ;
int j = curr . second . second ;
output . push_back ( curr . first );
// The next element belongs to same array as
// current.
if (j + 1 < arr [i]. size ())
pq . push ({ arr [i][j + 1 ], { i, j + 1 } });
}
return output;
}
// Driver program to test above functions
int main ()
{
// Change n at the top to change number
// of elements in an array
vector < vector < int > > arr{ { 2 , 6 , 12 },
{ 1 , 9 },
{ 23 , 34 , 90 , 2000 } };
vector < int > output = mergeKArrays (arr);
cout << "Merged array is " << endl;
for ( auto x : output)
cout << x << " " ;
return 0 ;
}
# Python code to implement the approach
import heapq
# Merge function merge two arrays
# of different or same length
# if n = max(n1, n2)
# time complexity of merge is (o(n log(n)))
# Function for meging k arrays
def mergeK ( arr , k ):
res = []
# Declaring min heap
h = []
# Inserting the first elements of each row
for i in range ( len (arr)):
heapq. heappush (h, (arr[i][ 0 ], i, 0 ))
# Loop to merge all the arrays
while h:
# ap stores the row number,
# vp stores the column number
val, ap, vp = heapq. heappop (h)
res. append (val)
if vp + 1 < len (arr[ap]):
heapq. heappush (h, (arr[ap][vp + 1 ], ap, vp + 1 ))
return res
# Driver code
if __name__ == '__main__' :
arr = [[ 2 , 6 , 12 ],
[ 1 , 9 ],
[ 23 , 34 , 90 , 2000 ]]
k = 3
l = mergeK (arr, k)
print ( * l)
Complexity
Time Complexity: O(N*K*logK)
Auxiliary Space: O(N)