微积分

在2500年前,古希腊人把一个多边形分成三角形,并把它们的面积相加,才找到计算多边形面积的方法。为了求出曲线形状(比如圆)的面积,古希腊人在这样的形状上刻内接多边形。如下图所示,内接多边形的等长边越多,就越接近圆:

  • 这个过程也被称为逼近法(method of exhaustion)。

事实上,逼近法就是积分(integral calculus)的起源。2000多年后,微积分的另一支,微分(differential calculus)被发明出来。在微分学最重要的应用是优化问题,即考虑如何把事情做到最好。正如在 范数和目标 中讨论的那样,这种问题在深度学习中是无处不在的。

在深度学习中,我们“训练”模型,不断更新它们,使它们在看到越来越多的数据时变得越来越好。通常情况下,变得更好意味着最小化一个损失函数(loss function),即一个衡量“模型有多糟糕”这个问题的分数。最终,我们真正关心的是生成一个模型,它能够在从未见过的数据上表现良好。但“训练”模型只能将模型与我们实际能看到的数据相拟合。因此,我们可以将拟合模型的任务分解为两个关键问题:

  • 优化(optimization):用模型拟合观测数据的过程;
  • 泛化(generalization):数学原理和实践者的智慧,能够指导我们生成出有效性超出用于训练的数据集本身的模型。

为了帮助读者在后面的章节中更好地理解优化问题和方法,本节提供了一个非常简短的入门教程,帮助读者快速掌握深度学习中常用的微分知识。

导数和微分

我们首先讨论导数的计算,这是几乎所有深度学习优化算法的关键步骤。 在深度学习中,我们通常选择对于模型参数可微的损失函数。 简而言之,对于每个参数, 如果我们把这个参数增加减少一个无穷小的量,可以知道损失会以多快的速度增加或减少,

假设我们有一个函数 ,其输入和输出都是标量。如果 导数存在,这个极限被定义为

如果 存在,则称 处是可微(differentiable)的。如果 在一个区间内的每个数上都是可微的,则此函数在此区间中是可微的。我们可以将 (1.4.1) 中的导数 解释为 相对于 瞬时(instantaneous)变化率。所谓的瞬时变化率是基于 中的变化 ,且 接近

为了更好地解释导数,让我们做一个实验。定义 如下:

%matplotlib inline
from d2l import torch as d2l
from matplotlib_inline import backend_inline
import numpy as np
 
def f(x):
    return 3 * x ** 2 - 4 * x

通过令 并让 接近 (1.4.1) 的数值结果接近 。虽然这个实验不是一个数学证明,但稍后会看到,当 时,导数

def numerical_lim(f, x, h):
    return (f(x + h) - f(x)) / h
 
h = 0.1
for i in range(5):
    print(f'h={h:.5f}, numerical limit={numerical_lim(f, 1, h):.5f}')
    h *= 0.1
h=0.10000, numerical limit=2.30000
h=0.01000, numerical limit=2.03000
h=0.00100, numerical limit=2.00300
h=0.00010, numerical limit=2.00030
h=0.00001, numerical limit=2.00003

让我们熟悉一下导数的几个等价符号。给定 ,其中 分别是函数 的自变量和因变量。以下表达式是等价的:

其中符号微分运算符,表示微分操作。我们可以使用以下规则来对常见函数求微分:

  • 是一个常数)
  • 幂律(power rule),是任意实数)

为了微分一个由一些常见函数组成的函数,下面的一些法则方便使用。假设函数 都是可微的, 是一个常数,则:

常数相乘法则

加法法则

乘法法则

除法法则

现在我们可以应用上述几个法则来计算 。令 ,我们有 :在这个实验中,数值结果接近 ,这一点得到了在本节前面的实验的支持。当 时,此导数也是曲线 切线的斜率。

为了对导数的这种解释进行可视化,我们将使用 matplotlib,这是一个 Python 中流行的绘图库。要配置 matplotlib 生成图形的属性,我们需要定义几个函数。在下面,use_svg_display 函数指定 matplotlib 软件包输出 svg 图表以获得更清晰的图像。

注意,注释 #@save 是一个特殊的标记,会将对应的函数、类或语句保存在 d2l 包中。因此,以后无须重新定义就可以直接调用它们(例如,d2l.use_svg_display())。

def use_svg_display():  #@save
    """使用svg格式在Jupyter中显示绘图"""
    backend_inline.set_matplotlib_formats('svg')

我们定义 set_figsize 函数来设置图表大小。注意,这里可以直接使用 d2l.plt,因为导入语句 from matplotlib import pyplot as plt 已标记为保存到 d2l 包中。

def set_figsize(figsize=(3.5, 2.5)):  #@save
    """设置matplotlib的图表大小"""
    use_svg_display()
    d2l.plt.rcParams['figure.figsize'] = figsize

下面的 set_axes 函数用于设置由 matplotlib 生成图表的轴的属性。

#@save
def set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend):
    """设置matplotlib的轴"""
    axes.set_xlabel(xlabel)
    axes.set_ylabel(ylabel)
    axes.set_xscale(xscale)
    axes.set_yscale(yscale)
    axes.set_xlim(xlim)
    axes.set_ylim(ylim)
    if legend:
        axes.legend(legend)
    axes.grid()

通过这三个用于图形配置的函数,定义一个plot函数来简洁地绘制多条曲线, 因为我们需要在整个书中可视化许多曲线。

#@save
def plot(X, Y=None, xlabel=None, ylabel=None, legend=None, xlim=None,
         ylim=None, xscale='linear', yscale='linear',
         fmts=('-', 'm--', 'g-.', 'r:'), figsize=(3.5, 2.5), axes=None):
    """绘制数据点"""
    if legend is None:
        legend = []
 
    set_figsize(figsize)
    axes = axes if axes else d2l.plt.gca()
 
    # 如果X有一个轴,输出True
    def has_one_axis(X):
        return (hasattr(X, "ndim") and X.ndim == 1 or isinstance(X, list)
                and not hasattr(X[0], "__len__"))
 
    if has_one_axis(X):
        X = [X]
    if Y is None:
        X, Y = [[]] * len(X), X
    elif has_one_axis(Y):
        Y = [Y]
    if len(X) != len(Y):
        X = X * len(Y)
    axes.cla()
    for x, y, fmt in zip(X, Y, fmts):
        if len(x):
            axes.plot(x, y, fmt)
        else:
            axes.plot(y, fmt)
    set_axes(axes, xlabel, ylabel, xlim, ylim, xscale, yscale, legend)

现在我们可以绘制函数 及其在 处的切线 ,其中系数 是切线的斜率。

x = np.arange(0, 3, 0.1)
plot(x, [f(x), 2 * x - 3], 'x', 'f(x)', legend=['f(x)', 'Tangent line (x=1)'])

偏导数

到目前为止,我们只讨论了仅含一个变量的函数的微分。在深度学习中,函数通常依赖于许多变量。因此,我们需要将微分的思想推广到多元函数(multivariate function)上。

是一个具有 个变量的函数。 关于第 个参数 偏导数(partial derivative)为:

为了计算 ,我们可以简单地将 看作常数,并计算 关于 的导数。对于偏导数的表示,以下是等价的:

梯度

我们可以连结一个多元函数对其所有变量的偏导数,以得到该函数的梯度(gradient)向量。具体而言,设函数 的输入是一个 维向量 ,并且输出是一个标量。函数 相对于 的梯度是一个包含 个偏导数的向量:

其中 通常在没有歧义时被 取代。

假设 维向量,在微分多元函数时经常使用以下规则:

  • 对于所有 ,都有
  • 对于所有 ,都有
  • 对于所有 ,都有

同样,对于任何矩阵 ,都有 。正如我们之后将看到的,梯度对于设计深度学习中的优化算法有很大用处。

链式法则

然而,上面方法可能很难找到梯度。这是因为在深度学习中,多元函数通常是复合(composite)的,所以难以应用上述任何规则来微分这些函数。幸运的是,可以用链式法则来对复合函数进行微分。

让我们先考虑单变量函数。假设函数 都是可微的,根据链式法则:

现在考虑一个更一般的场景,即函数具有任意数量的变量的情况。假设可微分函数有变量,其中每个可微分函数都有变量。注意,的函数。对于任意,链式法则给出:

小结

  • 微分和积分是微积分的两个分支,前者可以应用于深度学习中的优化问题。
  • 导数可以被解释为函数相对于其变量的瞬时变化率,它也是函数曲线的切线的斜率。
  • 梯度是一个向量,其分量是多变量函数相对于其所有变量的偏导数。
  • 链式法则可以用来微分复合函数。

练习

  1. 绘制函数和其在处切线的图像。
  2. 求函数 的梯度。
  3. 函数 的梯度是什么?
  4. 尝试写出函数 ,其中 的链式法则。

Discussions